
Reconstruction Algorithms for MRI 

 

by 

 

Berkin Bilgic 

S.M. Massachusetts Institute of Technology (2010) 

 

 

Submitted to the Department of Electrical Engineering & Computer 

Science in Partial Fulfillment of the Requirements for the Degree of Doctor 

of Philosophy at the Massachusetts Institute of Technology 

February 2013 

 

© 2013 Massachusetts Institute of Technology.  All rights reserved. 

 

 

 

Signature of Author: ____________________________________________________ 

Department of Electrical Engineering and Computer Science 

January 11, 2013 

 

Certified by:    ____________________________________________________ 

Elfar Adalsteinsson 

Associate Professor of Electrical Engineering and Computer Science 

Associate Professor of Health Sciences and Technology 

Thesis Supervisor 

 

Accepted by:   ____________________________________________________ 

Leslie A. Kolodziejski 

Chair, Department Committee on Graduate Students 

 



 
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
3 

 

Reconstruction Algorithms for MRI 

by 

Berkin Bilgic 

 

Submitted to the Department of Electrical Engineering & Computer 

Science on January 11, 2013, in Partial Fulfillment of the Requirements for 

the Degree of Doctor of Philosophy  

 

 

 

Abstract 

 

This dissertation presents image reconstruction algorithms for Magnetic Resonance Imaging 

(MRI) that aims to increase the imaging efficiency. Algorithms that reduce imaging time without 

sacrificing the image quality and mitigate image artifacts are proposed. The goal of increasing the 

MR efficiency is investigated across multiple imaging techniques: structural imaging with 

multiple contrasts preparations, Diffusion Spectrum Imaging (DSI), Chemical Shift Imaging 

(CSI), and Quantitative Susceptibility Mapping (QSM). The main theme connecting the proposed 

methods is the utilization of prior knowledge on the reconstructed signal. This prior often 

presents itself in the form of sparsity with respect to either a prespecified or learned signal 

transformation.  
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Fig. 2.1. Joint image reconstruction begins with modifying the undersampled k-space data 

to obtain undersampled k-space representations of vertical and horizontal image gradients. 

After finding the hyperparameters via Maximum Likelihood (ML) estimation, the means 

of the posterior distributions are assigned to be the gradient estimates. Finally, images are 

integrated from gradient estimates via solving a Least Squares (LS) problem. 

 

Fig 2.2 Reconstruction results with the extended Shepp-Logan phantoms after 

undersampling with acceleration R = 14.8, at 128×128 resolution. (a) Phantoms at Nyquist 

rate sampling. (b) Undersampling patterns in k-space corresponding to each image. (c) CS 

reconstructions with Lustig et al.ôs algorithm yielded 15.9 % RMSE (root-mean-square 

error). (d) Absolute error plots for Lustig et al.ôs method. (e) Reconstructions obtained 

with the M-FOCUSS joint reconstruction algorithm have 8.8 % RMSE. (f) Absolute 

difference between the Nyquist sampled phantoms and the M-FOCUSS reconstruction 

results. (g) Joint Bayesian CS reconstruction resulted in 0 % RMSE. (h) Absolute error 

plots for the Bayesian CS reconstructions. 

 

Fig. 2.3. Reconstruction results with SRI24 atlas after undersampling along the phase 

encoding direction with R = 4, at 256×256 resolution. (a) Atlas images at Nyquist rate 

sampling. (b) Undersampling patterns in k-space corresponding to each image. (c) 

Applying the gradient descent algorithm proposed by Lustig et al. resulted in 

reconstructions with 9.4 % RMSE. (d) Absolute difference between the gradient descent 

reconstructions and the Nyquist rate images. (e) M-FOCUSS reconstructions have 3.2 % 

RMSE. (f) Absolute error plots for the M-FOCUSS algorithm. (g) Joint Bayesian 

reconstruction yielded images with 2.3 % RMSE. (h) Error plots for the joint Bayesian 

reconstructions. 

 

Fig. 2.4. Reconstruction results with TSE after undersampling along the phase encoding 

direction with R = 2.5, at 256×256 resolution. (a) TSE scans at Nyquist rate sampling. (b) 

Undersampling patterns used in this experiment. (c) Reconstructions obtained with Lustig 

et al.ôs gradient descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for the 

gradient descent reconstructions. (e) M-FOCUSS joint reconstruction yielded images with 

5.1 % RMSE. (f) Error plots for the M-FOCUSS results. (g) Images obtained with the 

joint Bayesian CS reconstruction returned 3.6 % RMSE. (h) Error plots for the Bayesian 

CS reconstructions. 

 

Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with 

Bayesian CS and M-FOCUSS, one of the TSE images was shifted relative to the other by 

0 to 2 pixels with step sizes of ½ pixels using power law and phase encoding 

undersampling patterns. For speed, low resolution images with size 128×128 were used. 

For joint Bayesian CS, reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of 

vertical shift for power law sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal 
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shift for phase encoding sampling; for the M-FOCUSS method error increased from 4.7 % 

to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for phase encoding sampling. 

Fig. 2.6. Reconstruction results with the complex-valued Shepp-Logan phantoms after 

undersampling with acceleration R = 3.5, at 128×128 resolution. (a) Magnitudes of 

phantoms at Nyquist rate sampling. (b) Symmetric undersampling patterns in k-space 

corresponding to each image. (c) Real and imaginary parts of the first phantom (on the left 

in (a)). (d) Real and imaginary parts of the second phantom (on the right in (a)). (e) CS 

reconstructions with Lustig et al.ôs algorithm yielded 13.1 % RMSE. (f) Absolute error 

plots for Lustig et al.ôs method. (g) Reconstructions obtained with the M-FOCUSS joint 

reconstruction algorithm have 5.4 % RMSE. (h) Absolute difference between the Nyquist 

sampled phantoms and the M-FOCUSS reconstruction results. (i) Joint Bayesian CS 

reconstruction resulted in 2.4 % RMSE. (h) Absolute error plots for the Bayesian CS 

reconstructions. 

 

Fig. 2.7. Reconstruction results for complex-valued TSE images after undersampling 

along the phase encoding direction with R = 2, at 128×128 resolution. (a) Magnitudes of 

the TSE scans at Nyquist rate sampling. (b) Symmetric undersampling patterns used in 

this experiment. (c) Real and imaginary parts of the early echo image (on the left in (a)). 

(d) Real and imaginary parts of the late echo image (on the right in (a)). (e) 

Reconstructions obtained with Lustig et al.ôs gradient descent algorithm have 8.8 % 

RMSE. (d) Plots of absolute error for the gradient descent reconstructions. (e) M-

FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error plots for the M-

FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction returned 

6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions. 

 

Fig. 2.8. (a) Image gradients for the multi-contrast TSE scans demonstrate the similarity 

under the gradient transform. (b) To quantify this similarity, we computed the cumulative 

energy of the image gradient of early TSE scan (TSE1 in TSE1 order). Then we sorted the 

late TSE scan (TSE2) in descending order, and computed the cumulative energy in TSE1 

corresponding to the sorted indices in TSE2 which gave the curve TSE1 in TSE2 order. 

The similarity of the curves indicates similar sparsity supports across images. 

 

Fig. 2.9. (a) Lustig et al.ôs algorithm yielded 9.3% error (b) absolute error for (c) Bayesian 

CS with prior returned 5.8% error (d) error for Bayesian CS (e) fully-sampled prior (f) 

R=4 sampling pattern. 

 

Fig. 2.10. (a1-a2) Lustig et al.ôs algorithm yielded 9.5% error (b1-b2) absolute error plots 

for Lustig et al. (c1-c2). Joint Bayesian CS with prior returned 4.3% error (d1-d2) error 

plots for Bayesian CS (e) fully-sampled PD weighted prior image (f) R=4 random 

undersampling pattern in 1D. 

 

Fig. 3.1. L-curve for ǎ1-regularized QSM results for a young subject. X-axis: data 

consistency term 
1

2
ŭ ɢ

--F DF in regularized reconstruction for varying values of the 
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smoothing parameter ɚ. Y-axis: regularization term
1
ɢG . Setting ɚ = 5·10

-5
 yielded an 

under-regularized susceptibility map with ringing artifacts (a), whereas using ɚ = 10
-3
 

resulted an over-regularized reconstruction (c). For ɚ = 2·10
-4
, the operating point with the 

largest curvature on the L-curve was obtained (b). This setting was used for the reported 

ǎ1-regularized results. 

Fig. 3.2. L-curve for ǎ2-regularized QSM results for a young subject. X-axis: data 

consistency term 
1

2
ŭ ɢ

--F DF in regularized reconstruction for varying values of the 

smoothing parameter ɓ. Y-axis: regularization term
2
ɢG . Setting ɓ = 3·10

-3
 yielded an 

under-regularized susceptibility map with ringing artifacts (a), whereas using ɓ = 7·10
-2
 

resulted an over-regularized reconstruction (c). For ɓ = 1.5·10
-2
, the operating point with 

the largest curvature on the L-curve was obtained (b). This setting was used for the 

reported ǎ2-regularized results. 

 

Fig. 3.3.  Young (left) and elderly (right) group averages for FDRI (a), ǎ1-regularized 

QSM (b), and ǎ2-regularized QSM (c). Greater iron concentration yields brighter QSM 

and FDRI images. Splenium reference ROIs are indicated with a white box on the axial 

QSM slices. 

 

Fig. 3.4.  X-axis: Mean ± SD iron concentration (mg/100 g fresh weight) determined 

postmortem in each ROI (1). Y-axis: Mean ± SD ǎ1-regularized QSM in ppm (left) and 

FDRI in s
ī1

/Tesla (right) indices in all 23 subjects (black squares); the gray circles 

indicate the mean of the young group, and the open circles indicate the mean of the elderly 

group. 

 

Fig. 3.5. Correlation between FDRI and ǎ1-regularized QSM results on the regions of 

interest. Results indicate strong relationship between the two methods (Rho = 0.976, p = 

0.0098). Left:  all 23 subjects; middle: young group; right: elderly group. 

 

Fig. 3.6.  Mean ± S.E.M. of average susceptibility in ppm computed by the two methods 

(ǎ1-regularized QSM, top; ǎ2-regularized QSM, bottom) for each ROI in the young and 

elderly groups. 

 

Fig. 3.7 Reconstruction experiment for the piece-wise constant numerical phantom with 3 

compartments. (a) Noisy field map from which the susceptibility is estimated. (b) Closed-

form QSM solution. (c) Difference between ground truth and closed-form reconstructions. 

 

Fig. 3.8 In vivo reconstruction at 1.5T. (a) Tissue field map obtained after removing the 

background phase. (b) Closed-form QSM solution. (c) Difference between iterative and 

closed-form solutions. 

Fig. 4.1. The L-curve traced by the data consistency and lipid-basis penalty terms as the 

regularization parameter ʇ varies. Summation over lipid frequencies for under-regularized 

(a), optimally regularized (b) and over-regularized reconstructions (c) are presented. Panel 
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(d) depicts the analytically computed L-curve curvature results for the sample points. 

Fig.4. 2. Comparing the different artifact reduction algorithms by taking projections over 

the lipid resonance frequencies (in dB scale). Gold standard reconstruction is obtained 

using 20 averages of high-resolution data without peripheral k-space undersampling (20 

avghigh, Rhigh = 1, shown in (a)), while the basic proposed method is obtained using 2 

averages of high-resolution data without undersampling (2 avghigh, Rhigh = 1, shown in (b)) 

and the refined proposed method uses 10-fold undersampled, 2 average high-resolution 

data (2 avghigh, Rhigh = 10, shown in (c)). Lipid suppression results obtained by using only 

lipid-basis penalty method and only dual-density approach are depicted in panels (d) and 

(e), respectively. Applying no lipid suppression (f) results in severely corrupted spectra. 

 

Fig. 4.3. Comparison between NRMSE values of NAA maps relative to the gold standard 

reconstruction.  

 

Fig. 4.4. Comparison between NRMSE values of NAA maps computed within the 9×9 

cm
2
 excitation box relative to the NAA maps obtained with the OVS method. In (a), 

reconstruction results obtained using the gold-standard (20 avghigh, Rhigh = 1) method 

(blue) and the OVS spectra (black) belonging to the region inside the red box are also 

overplotted. In (b), the basic proposed method (blue) and the OVS spectra are compared. 

The spectra obtained with the refined method (blue) and the OVS results (black) are 

overplotted in (c). Lipid-basis penalty and OVS spectra are compared in (d). 

 

Fig. 4.5. Comparison of spectra inside the region of interest marked with the red box that 

were obtained with different lipid suppression methods. In (a), reconstruction results 

obtained using lipid-basis penalty method (blue) and the gold-standard reconstruction 

(black) are overplotted. In (b), the basic proposed method (blue) and the gold-standard 

spectra are presented. The spectra obtained with the refined method (blue) and the gold-

standard results (black) are plotted in (c). 

 

Fig. 4.6. Comparison of spectra inside the region of interest marked with the red box that 

were obtained with different lipid suppression methods. Panel (a) overplots reconstruction 

results using lipid-basis penalty method (blue) and the gold-standard reconstruction 

(black). In (b), the basic proposed method (blue) and the gold-standard spectra are 

compared. The spectra obtained with the refined method (blue) and the gold-standard 

results (black) are depicted in (c). 

 

Fig. 4.7. Lipid and NAA maps and artifact-free spectra for the Cartesian synthetic 

phantom are shown in (a). In (b), spiral sampling trajectory at Nyquist rate and 

reconstruction results upon the application of lipid-basis penalty are depicted. Using the 

undersampled spiral trajectory in (c), a high-resolution lipid image was estimated using 

FOCUSS, from which a combined image was computed due to the dual-density method. 

Finally, lipid-basis penalty was applied to this combined image. Panel (d) shows lipid 

suppression results when the k-space is sampled only at half of the full resolution and 

lipid-basis penalty is applied. For the three reconstruction methods, the example spectra 
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(plotted in blue) belong to the region of interest marked with the red box, and are 

overplotted with the artifact-free spectra (in black) for comparison. 

Fig. 4.8. Demonstration of approximate orthogonality between metabolite spectra obtained 

from in vivo OVS scan and lipid spectra from high resolution in vivo acquisition. In (a), 

the lipid and metabolite spectra with the highest orthogonality are plotted. In (b), the 

components of the metabolite spectrum that are orthogonal and parallel to the lipid 

spectrum for the best case in (a) are overplotted. The actual metabolite spectrum (in blue) 

is totally occluded by the orthogonal component (in orange). In (c), the lipid and 

metabolite spectra that are least orthogonal are depicted. In (d), the orthogonal and parallel 

components of the metabolite spectrum are overplotted for the worst case in (c). Panel (e) 

depicts the methodology used in computing the orthogonal and parallel metabolite 

components. 

 

Fig. 5.1. RMSE at each voxel in slice 40 of subject A upon R = 3 acceleration and 

reconstruction with Menzel et al.ôs method (a), Љ-FOCUSS (b), Dictionary-FOCUSS 

trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h) 

are obtained at higher acceleration factor of R = 5 with training on subjects A, B and C, 

respectively. Results for the reconstructions at R = 9 are given in (i), (j) and (k).  

 

Fig. 5.2. RMSE at each voxel in slice 25 of subject B upon R = 3 acceleration and 

reconstruction with Menzel et al.ôs method (a), Љ-FOCUSS (b), Dictionary-FOCUSS 

trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h) 

are obtained at higher acceleration factor of R = 5 with training on subjects A, B and C, 

respectively. Results for the reconstructions at R = 9 are given in (i), (j) and (k). 

 

Fig. 5.3. Mean and standard deviation of RMSEs computed on various slices of subject A 

using Љ- and Dictionary-FOCUSS trained on subject B. Lower panel depicts RMSE maps 

for four selected slices. 

 

Fig. 5.4. Mean and standard deviation of RMSEs computed on various slices of subject B 

using Љ- and Dictionary-FOCUSS trained on subject A. Lower panel depicts RMSE maps 

for four selected slices. 

 

Fig. 5.5. Top panel shows RMSEs in ómissingô q-space directions that are estimated with 

Wavelet+TV, Љ-FOCUSS and Dictionary-FOCUSS with training on subjects A, B and C 

at R=3. q-space images at directions [5,0,0] (a) and [0,4,0] (c) are depicted for comparison 

of the reconstruction methods. In panels (b) and (d), reconstruction errors of Wavelet+TV, 

Љ-FOCUSS and dictionary reconstructions relative to the 10 average fully-sampled image 

at directions [5,0,0] and [0,4,0] are given. 

 

Fig. 5.6. Panel on top depicts RMSEs of Wavelet+TV,  Љ-FOCUSS and Dictionary-

FOCUSS at R = 3  and fully-sampled 1 average data computed in 5 q-space locations 

relative to the 10 average data for subject A. Panel on the bottom shows the same 

comparison for the slice belonging to subject B. 
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Fig. 5.7. Axial view of white-matter pathways labeled from streamline DSI tractography 

in fully-sampled data (a) and Dictionary-FOCUSS reconstruction at R = 3 (b). The 

following are visible in this view: corpus callosum - forceps minor (FMIN), corpus 

callosum - forceps major (FMAJ), anterior thalamic radiations (ATR), cingulum - 

cingulate gyrus bundle (CCG), superior longitudinal fasciculus - parietal bundle (SLFP), 

and the superior endings of the corticospinal tract (CST).  Average FA (c) and volume in 

number of voxels (d) for each of the 18 labeled pathways, as obtained from the fully-

sampled (R=1, green) and Dictionary-FOCUSS reconstructed with 3-fold undersampling 

(R=3, yellow) datasets belonging to subject A. Intra-hemispheric pathways are indicated 

by ñL-ò (left) or ñR-ò (right). The pathways are: corpus callosum - forceps major (FMAJ), 

corpus callosum - forceps minor (FMIN), anterior thalamic radiation (ATR), cingulum - 

angular (infracallosal) bundle (CAB), cingulum - cingulate gyrus (supracallosal) bundle 

(CCG), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), superior 

longitudinal fasciculus - parietal bundle (SLFP), superior longitudinal fasciculus - 

temporal bundle (SLFT), uncinate fasciculus (UNC). 
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Chapter 1 

 

Introduction  

 

1.1 Motivation 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality that is capable of 

yielding high-resolution and high-contrast images of soft tissues of the body. Unlike Computed 

Tomography (CT) or X-ray imaging, MRI does not employ ionizing radiation. It also does not 

require the introduction of a radioactive agent as employed in Positron Emission Tomography 

(PET). Therefore, MRI is considered to be a safe imaging modality that finds important clinical 

use. However, a major drawback of MRI is that it is inherently a slow imaging modality, 

requiring the subjects to remain motionless within a tight, closed environment typically for half 

an hour or longer, depending on the imaging protocol. This constraint on the imaging time 

reduces subject compliance and raises challenges especially in pediatric and patient populations.  

    With the introduction of parallel imaging and compressed sensing (CS) methods and ultra 

high-field systems over the last decade, substantial progress has been made towards improved the 

image quality and reduced acquisition time. Parallel imaging relies on the information provided 

by multiple receive coils that are sensitive to different parts of the region of interest for 

accelerated imaging. Aliasing caused by subsampled acquisitions is disentangled with the help of 

multiple coil data to yield high quality images. Parallel imaging has made the transition from 

being a technique to becoming a technology, as 2 to 3-fold accelerated acquisitions in the clinical 

setting are ubiquitous. Parallel imaging methods can operate either in the image space (2), or in 

the Fourier space (k-space) of the object where the data are collected (3). Compressed sensing, on 

the other hand, is a less mature technique in the field of medical imaging. CS is a collection of 

algorithms that aim to recover signals from subsampled measurements by applying a sparsity-

inducing prior over the signal coefficients. Even though the idea of using sparsity-promoting 

optimization techniques in signal processing and statistics is not new (e.g. (4,5)), it was not 

deployed in MR image reconstruction until recently (6). Because of the non-linear nature of the 

processing involved, CS reconstruction artifacts are not fully characterized. As such, the clinical 

translation of CS has not reached the same level as parallel imaging methods.  

    More recent developments aim to merge parallel imaging and CS techniques to allow further 

reduction in imaging time. In this domain, L1 SPIR-iT (7) is a popular algorithm that combines 
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the k-space data from multiple coils while enforcing sparsity of coil images with respect to the 

wavelet transform. Similarly, it is possible to combine image-domain parallel imaging with 

sparsity priors for improved reconstruction (8).  

    In the light of these recent developments, this thesis presents image reconstruction algorithms 

that aim to further increase the imaging efficiency of MRI. These algorithms achieve, 

i. Reduction of the total scan time without sacrificing the image quality, and 

ii. Mitigation image artifacts due to physiology or MR physics to improve the image quality. 

    Reduction of imaging time is a well-motivated research goal, leading to increased patient 

comfort and reduced costs. This goal is investigated for the following MR imaging techniques, 

i. Structural imaging with multiple contrast preparations: By exploiting image statistics 

and similarity between images obtained with different contrasts, improved image 

reconstruction from undersampled data is demonstrated.  

ii. Diffusion Spectrum Imaging (DSI): Diffusion Weighted Imaging (DWI) aims to explore 

the brain connectivity by mapping the water diffusion as a function of space. DSI is a 

particular DWI method that is able to generate a complete description of diffusion 

probability density functions (pdfs), but suffers from significantly long imaging times. 

This dissertation demonstrates that by learning the structure of pdfs from training data, it 

is possible to substantially reduce the scan time with small cost on the image quality. 

    Mitigation of image artifacts is yet a different way to achieve increased efficiency, as it 

increases the amount of meaningful data for further processing and diagnosis. Results on artifact 

mitigation are demonstrated within two contexts,  

i. Regularized Quantitative Susceptibility Mapping (QSM): The magnetic property of 

the tissues called magnetic susceptibility gives rise to the observed signal phase in 

MRI, which is estimated using an iterative background removal method and 

regularized inversion. Regularization helps reduce the streaking artifacts in the 

reconstructed susceptibility map, which stem from the ill-posed nature of the 

relation connecting the phase to the magnetic susceptibility. 

ii. Lipid artifact reduction in Chemical Shift Imaging (CSI): A major obstacle in CSI is 

the contamination of brain spectra by the strong lipid signals around the skull. Lipid 

artifacts are substantially reduced by employing an iterative reconstruction method 

that makes use of rapidly sampled high frequency content of lipid signals. 
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1.2 Outline and bibliographical notes 

In the following, the organization of the thesis is presented with brief descriptions and 

bibliographical contributions of each section. 

Chapter 2: is concerned with reconstruction of structural MR images from undersampled 

observations. Versatility of MRI allows images with multiple contrasts preparations to be 

acquired, wherein each contrast emphasizes certain tissue types. Collection of such multi-contrast 

data facilitates diagnosis and finds frequent clinical use. In this setting, it is assumed that data are 

acquired with a single receive coil, hence parallel imaging is outside the scope of this chapter. 

One option for recovery of undersampled multi-contrast images is to employ compressed sensing 

on each contrast independently. These images belong to the same underlying physiology, so they 

are expected to share common tissue boundaries. Focusing on this point, this chapter presents a 

joint reconstruction method capable of improving compressed sensing reconstruction quality by 

exploiting the shared information content across contrasts. This method is based on Bayesian 

compressed sensing, which interprets sparsity-inducing reconstruction within a probabilistic 

framework. An extension to joint reconstruction is also presented: since the imaging sequences 

involved in the multi-contrast protocol may have different acquisition speeds, it might be possible 

to obtain a fully-sampled dataset using a fast sequence in addition to the undersampled contrasts. 

By using the fully-sampled image to initialize the reconstruction, further improvement in joint 

reconstruction quality is demonstrated.  

    The proposed methods take place in, 

¶ B. Bilgic, V.K. Goyal, E. Adalsteinsson; Multi-contrast Reconstruction with Bayesian 

Compressed Sensing; Magnetic Resonance in Medicine, 2011; 66(6):1601-1615. 

¶ B. Bilgic, V.K. Goyal, E. Adalsteinsson; Joint Bayesian Compressed Sensing for Multi-

contrast Reconstruction; International Society for Magnetic Resonance in Medicine 19th 

Scientific Meeting, Montreal, Canada, 2011, p. 71.  

¶ B. Bilgic, E. Adalsteinsson; Joint Bayesian Compressed Sensing with Prior Estimate; 

International Society for Magnetic Resonance in Medicine 20th Scientific Meeting, 

Melbourne, Australia, 2012, p. 75.  

Chapter 3: focuses on Quantitative Susceptibility Mapping (QSM) which is an MRI based 

imaging technique that provides valuable quantitation of tissue iron concentration and vessel 

oxygenation. However, susceptibility cannot be observed directly with MRI. Reconstruction of 
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underlying susceptibility maps from measured MR signal phase is a challenging problem that 

requires deconvolution of an ill-posed kernel. Hence, this problem benefits from regularization 

that reflects prior knowledge on the tissue susceptibility. As susceptibility is a feature tied to the 

paramagnetic properties of the underlying tissues, it is expected to vary smoothly within tissue 

compartments. Using regularization based on spatial gradients of the susceptibility maps 

facilitates the deconvolution. In a group study where the brain iron concentration in normal aging 

was investigated, this chapter shows that accurate quantification is possible with this regularized 

deconvolution approach. Further, an algorithm that solves the regularized inversion problem in 

less than 5 seconds is proposed, which is a significant speed up relative to proposed iterative 

methods that can take up to an hour. 

    The contents of this chapter are included in, 

¶ B. Bilgic, A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, E. Adalsteinsson; MRI Estimates 

of Brain Iron Concentration in Normal Aging Using Quantitative Susceptibility Mapping; 

NeuroImage, 2012; 59(3):2625-2635. 

¶ B. Bilgic, A.P. Fan, E. Adalsteinsson; Quantitative Susceptibility Map Reconstruction 

with Magnitude Prior; International Society for Magnetic Resonance in Medicine 19th 

Scientific Meeting, Montreal, Canada, 2011, p. 746.  

¶ B. Bilgic, I. Chatnuntawech, A.P. Fan, E. Adalsteinsson; Regularized QSM in Seconds; 

submitted to International Society for Magnetic Resonance in Medicine 21st Scientific 

Meeting, Salt Lake City, Utah, USA, 2013.  

¶ B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson; 

Fast Regularized Reconstruction Tools for QSM and DSI; ISMRM Workshop on Data 

Sampling & Image Reconstruction, Sedona, Arizona, USA, 2013, accepted.  

Chapter 4: proposes two lipid artifact suppression methods for CSI. While MRI enables 

spatial encoding of the human tissue, CSI also provides encoding in magnetic resonance 

frequency. At each voxel, this yields a 1-dimensional spectrum of relative concentrations of 

biochemical metabolites, each with a slightly different resonant frequency. The ability to map 

biochemical metabolism proves to be critical in cancer, Alzheimer's disease and multiple 

sclerosis. The dominant challenge of CSI is in the low signal of the metabolites of interest. Since 

signal-to-noise ratio (SNR) is proportional to the voxel size due to averaging effect, large voxels 

are required to lower the noise threshold, thereby constraining the voxel sizes in spectroscopy to 

be much larger than those of MRI (1 cm
3
 compared to 1 mm

3
). The resolution constraint poses a 
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significant difficulty to metabolite detection as it leads to signal contamination from the 

subcutaneous lipid layer. This chapter proposes two post-processing methods that exploit prior 

knowledge about lipid and metabolite signals to yield artifact-free metabolite spectra. These 

algorithms rely on two observations: lipid signals are constrained to reside around the skull, and 

metabolite and lipid spectra are approximately orthogonal. As the lipids are constrained to reside 

on a ring in space and within a certain range in resonance frequency, they can be well 

approximated from undersampled data using sparsity-enforcing reconstruction. This permits 

estimation of high-resolution lipid signals, effectively reducing the ringing artifacts. Combined 

with iterative reconstruction that enforces orthogonality among metabolites in the brain and the 

lipid spectra, artifact-free metabolite maps are thus obtained. 

The contributions in this chapter can also be found in, 

¶ B. Bilgic, B. Gagoski, E. Adalsteinsson; Lipid Suppression in CSI with Spatial Priors 

and Highly-Undersampled Peripheral k-space; Magnetic Resonance in Medicine, 2012; 

DOI: 10.1002/mrm.24399. 

¶ B. Bilgic, B. Gagoski E. Adalsteinsson; Lipid Suppression in CSI with Highly-

Undersampled Peripheral k-space and Spatial Priors; International Society for Magnetic 

Resonance in Medicine 20th Scientific Meeting, Melbourne, Australia, 2012, p. 4455.  

Chapter 5: Diffusion Weighted Imaging (DWI) is a widely used method to study white 

matter connectivity of the brain. Diffusion Tensor Imaging (DTI) is an established DWI method 

that models the water diffusion in each voxel as a univariate Gaussian distribution. Fiber 

tractography algorithms are employed to follow the major eigenvector of the tensor fit across 

neighboring voxels. However, the diffusion tensor model is unable to characterize multiple fiber 

orientations within the same voxel, which constitute over 90% of white matter voxels. Rather 

than modeling the diffusion, Diffusion Spectrum Imaging (DSI) offers a complete description of 

the diffusion probability density function (pdf). This provides DSI with the capability to resolve 

complex distributions of fiber orientations, thus overcoming the single-orientation limitation of 

DTI. The tradeoff is that, while a typical DTI scan takes ~5 minutes, DSI suffers from 

prohibitively long imaging times of ~50 minutes. By relying on prior information extracted from 

a training dataset, this chapter demonstrates dramatic reduction in DSI scan time while retaining 

the image quality. This high quality reconstruction is made possible by the priors encoded in a 

dictionary (created from a separately acquired training DSI dataset) that captures the structure of 
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diffusion pdfs. Further, two efficient dictionary-based reconstruction methods that attain 1000-

fold computation speed-up relative to iterative DSI compressed sensing algorithms are presented.  

    The methods introduced in this chapter can also be found in, 

¶ B. Bilgic, K. Setsompop, J. Cohen-Adad, A. Yendiki, L.L. Wald, E. Adalsteinsson; 

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive 

Dictionaries; Magnetic Resonance in Medicine, 2012; 68(6):1747-1754. 

¶ B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson; 

Fast Diffusion Spectrum Imaging Reconstruction with Trained Dictionaries; submitted to 

IEEE Transactions on Medical Imaging. 

¶ B. Bilgic, K. Setsompop, J. Cohen-Adad, V. Wedeen, L. Wald, E. Adalsteinsson; 

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive 

Dictionaries; 15th International Conference on Medical Image Computing and Computer 

Assisted Intervention, 2012; LNCS 7512:1-9.  

¶ B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson; 

Fast DSI Reconstruction with Trained Dictionaries; submitted to International Society 

for Magnetic Resonance in Medicine 21st Scientific Meeting, Salt Lake City, Utah, USA, 

2013.  

¶ B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson; 

Fast Regularized Reconstruction Tools for QSM and DSI; ISMRM Workshop on Data 

Sampling & Image Reconstruction, Sedona, Arizona, USA, 2013, accepted.  

 

Chapter 6: proposes potential extensions to the methods introduced throughout the 

dissertation. Higher acceleration factors may be achieved by extending the multi-contrast 

reconstruction idea to include parallel imaging. Multi -modality imaging (e.g. MR-PET) may also 

benefit from joint reconstruction. Employing magnitude information in QSM deconvolution may 

improve the conditioning of the inversion. Quantitative susceptibility venography with vessel 

tracking may be feasible with the help of tracking algorithms in fiber tractography literature. In 

the context of spectroscopic imaging, parametric signal models may provide further 

regularization in lipid artifact suppression. Finally, through the combination of parallel imaging 

and dictionary-based reconstruction, even higher acceleration factors in DSI acquisitions may 

become achievable.  
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Chapter 2 

 

Joint Reconstruction of Multi-Contrast Images 

 

Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region 

of interest under several different contrast preparations. This chapter presents a reconstruction 

algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from 

undersampled k-space data with higher fidelity than when the images are reconstructed either 

individually or jointly by a previously proposed algorithm, M-FOCUSS. The joint inference 

problem is formulated in a hierarchical Bayesian setting, wherein solving each of the inverse 

problems corresponds to finding the parameters (here, image gradient coefficients) associated 

with each of the images. The variance of image gradients across contrasts for a single volumetric 

spatial position is a single hyperparameter. All of the images from the same anatomical region, 

but with different contrast properties, contribute to the estimation of the hyperparameters, and 

once they are found, the k-space data belonging to each image are used independently to infer the 

image gradients. Thus, commonality of image spatial structure across contrasts is exploited 

without the problematic assumption of correlation across contrasts. Examples demonstrate 

improved reconstruction quality (up to a factor of 4 in root-mean-square error) compared to 

previous compressed sensing algorithms and show the benefit of joint inversion under a 

hierarchical Bayesian model. 

 

2.1 Introduc tion 

In clinical applications of structural MRI, it is routine to image the same region of interest under 

multiple contrast settings to enhance the diagnostic power of T1, T2, and proton-density weighted 

images. Herein, a Bayesian framework that makes use of the similarities between the images with 

different contrasts is presented to jointly reconstruct MRI images from undersampled data 

obtained in k-space. This method applies the joint Bayesian compressive sensing (CS) technique 

of Ji et al. (9) to the multi-contrast MRI setting with modifications for computational and k-space 

acquisition efficiency. Compared to conventional CS algorithms that work on each of the images 

independently (e.g. (6)), this joint inversion technique is seen to improve the reconstruction 

quality at a fixed undersampling ratio and to produce similar reconstruction results at higher 

undersampling ratios (i.e., with less data).  
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    Conventional CS produces images using sparse approximation with respect to an appropriate 

basis; with gradient sparsity or wavelet-domain sparsity, the positions of nonzero coefficients 

correspond directly to spatial locations in the image.  A natural extension to exploit structural 

similarities in multi-contrast MRI is to produce an image for each contrast setting while keeping 

the transform-domain sparsity pattern for each image the same.  This is called joint or 

simultaneous sparse approximation. One of the earliest applications of simultaneous sparse 

approximation was in localization and used an algorithm based on convex relaxation (10). An 

early greedy algorithm was provided by Tropp et al. (11). Most methods for simultaneous sparse 

approximation extend existing algorithms such as Orthogonal Matching Pursuit (OMP), FOCal 

Underdetermined System Solver (FOCUSS) (4), or Basis Pursuit (BP) (12) with a variety of ways 

for fusing multiple measurements to recover the nonzero transform coefficients. Popular joint 

reconstruction approaches include Simultaneous OMP (SOMP) (11), M-FOCUSS (13), and the 

convex relaxation algorithm in (14). All of these algorithms provide significant improvement in 

approximation quality, however they suffer from two important shortcomings for the current 

problem statement. First, they assume that the signals share a common sparsity support, which 

does not apply to the multi-contrast MRI scans. Even though these images have nonzero 

coefficients in similar locations in the transform domain, assuming perfect overlap in the sparsity 

support is too restrictive. Second, with the exception of (15), most methods formulate their 

solutions under the assumption that all of the measurements are made via the same observation 

matrix, which in this context would correspond to sampling the same k-space points for all of the 

multi-contrast scans. As demonstrated here, observing different frequency sets for each image 

increases the overall k-space coverage and improves reconstruction quality.     

    The general joint Bayesian CS algorithm recently presented by Ji et al. (9) addresses these 

shortcomings and fits perfectly to the multi-contrast MRI context. Given the observation matrices 

MK
i

i³ÍCū with iK representing the number of k-space points sampled for the i
th
 image and M 

being the number of voxels, the linear relationship between the k-space data and the unknown 

images can be expressed as iii xy ū=  where Li ,...,1=  indexes the L multi-contrast scans and 

iy is the vector of k-space samples belonging to the i
th
 image ix . Let x

iŭ  and y
iŭ  

denote the 

vertical and the horizontal image gradients, which are approximately sparse since the MRI images 

are approximately piecewise constant in the spatial domain. In the Bayesian setting, the task is to 

provide a posterior belief for the values of the gradients xiŭ  and y
iŭ , with the prior assumption 

that these gradients should be sparse and the reconstructed images should be consistent with the 

acquired k-space data. Each image formation problem (for a single contrast) constitutes an inverse 
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problem of the form ii xy ­ , and the joint Bayesian algorithm aims to share information among 

these tasks by placing a common hierarchical prior over the problems. Such hierarchical Bayesian 

models can capture the dependencies between the signals without imposing correlation, for 

example by positing correlation of variances between zero-mean quantities that are conditionally 

independent given the hyperparameters. Data from all signals contribute to learning the common 

prior (i.e., estimating the hyperparameters) in a maximum likelihood framework, thus making 

information sharing among the images possible. Given the hierarchical prior, the individual 

gradient coefficients are estimated independently. Hence, the solution of each inverse problem is 

affected by both its own measured data and by data from the other tasks via the common prior. 

The dependency through the estimated hyperparameters is essentially a spatially-varying 

regularization, so it preserves the integrity of each individual reconstruction problem. 

    Apart from making use of the joint Bayesian CS machinery to improve the image 

reconstruction quality, the proposed method presents several novelties. First, the Bayesian 

algorithm is reduced to practice on MRI data sampled in k-space with both simulated and in vivo 

acquisitions. In the elegant work by Ji et al. (9), their method was demonstrated on CS 

measurements made directly in the sparse transform domain as opposed to the k-space domain 

that is the natural source of raw MRI data. The observations iy  were obtained via iii ɗy ū=  

where iɗare the wavelet coefficients belonging to the i
th
 test image. But in all practical settings of 

MRI data acquisition, the observations are carried out in the k-space corresponding to the 

reconstructed images themselves, i.e. the k-space data belonging to the wavelet transform of the 

image is not accessible. In the method as presented here, measurements of the image gradients are 

obtained by a simple modification of the k-space data and thus it is possible to overcome this 

problem. After solving for the gradient coefficients with the Bayesian algorithm, images that are 

consistent with these gradients are recovered in a least-squares setting. Secondly, the presented 

version accelerates the computationally-demanding joint reconstruction algorithm by making use 

of the Fast Fourier Transform (FFT) to replace some of the demanding matrix operations in the 

original implementation by Ji et al. This makes it possible to use the algorithm with higher 

resolution data than with the original implementation, which has large memory requirements. 

Also, partially-overlapping undersampling patterns are exploited to increase the collective k-

space coverage when all images are considered; herein it is reported that this flexibility in the 

sampling pattern design improves the joint CS inversion quality. Additionally, the algorithm is 

generalized to allow inputs that correspond to complex-valued images. Finally, these finding are 

compared with the popular method in (6) and with the M-FOCUSS joint reconstruction scheme. 
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In addition to yielding smaller reconstruction errors relative to either method, the proposed 

Bayesian algorithm contains no parameters that need tuning.  

 

2.2 Theory 

2.2.1 Compressed Sensing in MRI 

Compressed sensing has received abundant recent attention in the MRI community because of its 

demonstrated ability to speed up data acquisition. Making use of CS theory to this end was first 

proposed by Lustig et al. (6), who formulated the inversion problem as 

(2.1) 

     

    where Ɋ is the wavelet basis, (.)TV  
is the ǎ1 norm of discrete gradients as a proxy for total 

variation, b trades off wavelet sparsity and gradient sparsity, F
W is the undersampled Fourier 

transform operator containing only the frequencies WÍw , and e is a threshold parameter that 

needs to be tuned for each reconstruction task. This constrained inverse problem can be posed as 

an unconstrained optimization program (6) 

(2.2) 

    where waveletl  and TVl  are wavelet and total variation regularization parameters that again call 

for tuning. 

2.2.2 Conventional Compressed Sensing from a Bayesian Standpoint 

Before presenting the mathematical formulation that is the basis for the proposed method, this 

section briefly demonstrates that it is possible to recover the conventional CS formulation in Eq. 

2.2 with a Bayesian treatment. For the moment, consider abstractly that a sparse signal 
MRÍx  

that is observed by compressive measurements via the matrix 
MK³ÍRū , where MK<  is under 

consideration. The general approach of Bayesian CS is to find the most likely signal coefficients 

with the assumptions that the signal is approximately sparse and that the data are corrupted by 

noise with a known distribution. The sparsity assumption is reflected by the prior defined on the 

signal coefficients, whereas the noise model is expressed via the likelihood term. 
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    As a means to justify Eq. (2.2), a commonly-used signal prior and noise distribution are 

presented. The data are modeled as being corrupted by additive white Gaussian noise with 

variance 
2s  via nxy +=ū . In this case, the probability of observing the data y  given the 

signal x  is a Gaussian probability density function (pdf) with mean xū and variance 
2s , 

 

(2.3) 

 

    which constitutes the likelihood term. To formalize the belief that the signal x  is sparse, a 

sparsity-promoting prior is placed on it. A common prior is the separable Laplacian density 

function (16) 

(2.4) 

 

    Invoking Bayesô theorem, the posterior for the signal coefficients can be related to the 

likelihood and the prior as 

(2.5) 

  

    The signal that maximizes this posterior probability via maximum a posteriori (MAP) 

estimation is sought for. Since the denominator is independent ofx , the MAP estimate can be 

found by minimizing the negative of the logarithm of the numerator:  

(2.6) 

    This expression is very similar to the unconstrained convex optimization formulation in Eq. 

(2.2); it is possible obtain Eq. (2.2) with a slightly more complicated prior that the wavelet 

coefficients and gradient of the signal of interest follow Laplacian distributions.  Therefore, it is 

possible to view the convex relaxation CS algorithms as MAP estimates with a Laplacian prior on 

the signal coefficients. It is possible to view many algorithms used in CS as MAP estimators with 

respect to some prior (17). 
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2.2.3 Extending Bayesian Compressed Sensing to Multi -Contrast MRI  

The Bayesian analysis in the previous section has two significant shortcomings. First, it is 

assumed that the signal of interest is sparse with respect to the base coordinate system.  To get the 

maximum benefit from estimation with respect to a separable signal prior, it is critical to change 

to coordinates in which the marginal distributions of signal components are highly peaked at zero 

(18).  For MR image formation, we aim to take advantage of the highly peaked distributions of 

image-domain gradients, and show how to modify k-space data to obtain measurements of these 

gradients.  Second, the optimal MAP estimation through Eq. (2.6) requires knowledge of 

parameters l and s.  The proposed method eliminates the tuning of such parameters by imposing 

a hierarchical Bayesian model in which l and s are modeled as realizations of random variables; 

this introduces the need for ñhyperpriorsò at a higher level of the model, but as detailed below, it 

suffices to eliminate tuning of the hyperpriors using a principle of least informativeness.  Along 

with addressing these shortcomings, modifications for joint reconstruction across contrast 

preparations are also discussed. 

    In the multi-contrast setting, the signals {} ML

ii RÍ
=1

x  represent MRI scans with different 

image weightings, e.g. T1, T2 and proton density weighted images might have been obtained for 

the same region of interest. These are not sparse directly in the image domain. Therefore, it is 

beneficial to cast the MRI images into a sparse representation to make use of the Bayesian 

formalism. The fact that the observation matrices 
MKi³

W ÍC
i

F  in MRI are undersampled Fourier 

operators makes it very convenient to use spatial image gradients as a sparsifying transform 

(19,20). To obtain the k-space data corresponding to vertical and horizontal image gradients, it is 

sufficient to modify the data iy  according to  

 (2.7) 

(2.8) 

    where 1-=j ; x
iŭ  and y

iŭ  are the i
th
 image gradients; x

iy  and y
iy  are the modified 

observations; and w and u index the frequency space of the n by m pixel images, with 

Mmn =Ö . To solve Eq. (2.2), Lustig et al. (6) proposes to use the conjugate gradient descent 

algorithm, for which it is relatively straightforward to incorporate the TV norm. But algorithms 

that do not explicitly try to minimize an objective function (e.g. OMP and Bayesian CS) will need 

to modify the k-space data according to Eqs. (2.7) and (2.8) to make use of the Total Variation 

penalty in the form of spatial derivatives. 
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    Secondly, we need to express the likelihood term in such a way that both real and imaginary 

parts of the noise iK
i CÍn  in k-space are taken into account. We rearrange the linear 

observations i
x
i

x
i i

nŭFy += W  as 
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    for L,i ...,1= , where (.)Re  and (.)Im  indicate real and imaginary parts with the 

understanding that we also have an analogous set of linear equations for the horizontal gradients 

y
iŭ . For simplicity, we adopt the notation 

i
x
ii

x
i NŭY +=ū             (2.10) 

    where iK
i

x
i

2
, RÍNY , and 

MK
i

i³Í
2Rū  correspond to the respective concatenated variables 

in Eq. (2.9). With the assumption that both real and imaginary parts of the k-space noise are white 

Gaussian with some variance 
2s , the data likelihood becomes 

(2.11) 

 

    With these modifications, it is now possible to compute the MAP estimates for the image 

gradients by invoking Laplacian priors over them. Unfortunately, obtaining the MAP estimates 

for each signal separately contradicts with the ultimate goal to perform joint reconstruction. In 

addition, it is beneficial to have a full posterior distribution for the sparse coefficients rather than 

point estimates, since having a measure of uncertainty in the estimated signals leads to an elegant 

experimental design method. As argued in (16), it is possible to determine an optimal k-space 

sampling pattern that reduces the uncertainty in the signal estimates. But since the Laplacian prior 

is not a conjugate distribution to the Gaussian likelihood, the resulting posterior will not be in the 

same family as the prior, hence it will not be possible to perform the inference in closed form to 

get a full posterior. The work by Ji et al. (9) presents an elegant way of estimating the image 

gradients within a hierarchical Bayesian model. This approach allows information sharing 

between the multi-contrast scans, at the same yields a full posterior estimate for the sparse 

coefficients. In the following section, the algorithm used for finding this distribution is 

summarized and the complete image reconstruction scheme is depicted in Fig. 2.1. 
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Fig. 2.1. Joint image reconstruction begins with modifying the undersampled k-space data to 

obtain undersampled k-space representations of vertical and horizontal image gradients. After 

finding the hyperparameters via Maximum Likelihood (ML) estimation, the means of the 

posterior distributions are assigned to be the gradient estimates. Finally, images are integrated 

from gradient estimates via solving a Least Squares (LS) problem. 

 

2.2.4 Bayesian Framework to Estimate the Image Gradient Coefficients 

Hierarchical Bayesian representation provides the ability to capture both the idiosyncrasy of the 

inversion tasks and the relations between them, while allowing closed form inference for the 

image gradients. According to this model, the sparse coefficients are assumed to be drawn from a 

product of zero mean normal distributions with variances determined by the hyperparameters 

{ }M
jj 1=

=aŬ  

(2.12) 

    where )0( 1-aÖ j,|N  is a zero mean Gaussian density function with variance 
1-aj . In order to 

promote sparsity in the gradient domain, Gamma priors are defined over the hyperparameters Ŭ 
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(2.13) 

 

    where (.)G  is the Gamma function, and a and b are hyper-priors that parametrize the Gamma 

prior. To see why the combination of Gaussian and Gamma priors will promote a sparse 

representation, consider marginalizing over the hyperparameters Ŭto obtain the marginal priors 

acting on the signal coefficients (9,16,21) 

 

(2.14) 

    which turn out to yield improper priors of the form ||/)( ,,
x

ji
x

jip ŭŭ 1́ in the particular case of 

uniform hyper-priors 0==ba . Similar to the analysis for the Laplacian prior, this formulation 

would introduce an ǎ1 regularizer of the form || ,
x

ji
M
j ŭlog1=ä  if a non-joint MAP solution was 

sought for. Here, it should also be noted that the hyperparameters Ŭare shared across the multi-

contrast images, each ja controlling the variance of all L gradient coefficients { }L
i

x
ji 1=,ŭ through 

Eq. (2.12). In this case, jaôs diverging to infinity implies that the pixels in the j
th
 location of all 

images are zero, due to the zero-mean, zero-variance Gaussian prior at this location. On the other 

hand, a finite ja  does not constrain all L pixels in the j
th
 location to be non-zero, which allows 

the reconstruction algorithm to capture the diversity of sparsity patterns across the multi-contrast 

scans.  

    In practice, the noise variance 
2s  would also need to be estimated as it propagates via the data 

likelihood term to the posterior distribution of gradient coefficients (Eq. 2.5). Even though it is 

not difficult to obtain such an estimate in image domain if the full k-space data were available, 

this would not be straightforward with undersampled measurements. Therefore, following Ji et al. 

(9), the formulation is slightly modified so that the noise variance can be analytically integrated 

out while computing the posterior. This is made possible by including the noise precision 

2
0

-=sa  in the signal prior, 

(2.15) 

    A Gamma prior over the noise precision parameter 0a  is defined as 
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    In all of the following experiments, the hyper-priors are set to 0==dc  to express that no a 

priori  noise precision is favored as they lead to the ñleast informativeò improper prior

00 100 a´==a /),|( dcp . The choice of priors in Eqs. (2.15-16) allows analytical computation 

of the posterior for the image gradients ),|( ŬYŭ
x

i
x
ip , which turns out to be a multivariate 

Student-t distribution with mean x
i

T
iii Yɛ ūɆ=  and covariance 1)-+= Aū(ūɆ i

T
ii  with 

),...,( 1 Mdiag aa=A . This formulation is seen to allow robust coefficient shrinkage and 

information sharing thanks to inducing a heavy-tail in the posterior (9). It is worth noting that 

placing a Gamma prior on the noise precision does not change the additive nature of observation 

noise, however a heavier-tailed t-distribution replaces the normal density function in explaining 

this residual noise. This has been seen to be more resilient in allowing outlying measurements (9). 

    Now that an expression for the posterior ),|( ŬYŭ
x

i
x
ip  is obtained, the remaining  work is to 

find a point estimate for the hyperparameters 
MRÍŬ  in a maximum likelihood (ML) 

framework. This is achieved by searching for the hyperparameter setting that makes the 

observation of the k-space data most likely, and such an optimization process is called evidence 

maximization or type-II maximum likelihood method (9,16,21). Therefore, the hyperparameters 

that maximize  

(2.17) 

 

are sought for. It should be noted that data from all L tasks contribute to the evidence 

maximization procedure via the summation over conditional distributions. Hence, the information 

sharing across the images occurs through this collaboration in the maximum likelihood estimation 

of the hyperparameters. Once the point estimates are constituted using all of the observations, the 

posterior for the signal coefficients xiŭ  is estimated based only on its related k-space data x
iY  due 

to x
i

T
iii Yɛ ūɆ= . Thus, all of the measurements are used in the estimation of the 

hyperparameters, but only the associated data are utilized to constitute an approximation to the 

gradient coefficients. 

    Ji et al. show that it is possible to maximize Eq. (2.17) with a sequential greedy algorithm, in 

which the starting point is a single basis vector for each signal, then the basis function that yields 

the largest increase in the log likelihood is added at each iteration. Alternatively, a 

hyperparameter corresponding to a basis vector that is already in the dictionary of current bases 

can be updated or deleted, if this gives rise to the largest increase in the likelihood at that 
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iteration. A final refinement to Ji et al.ôs Bayesian CS algorithm is added by replacing the 

observation matrices { }L
ii 1=

ū  that are needed to be stored with the Fast Fourier Transform (FFT). 

This enables working with MRI images of practical sizes; otherwise each of the observation 

matrices would occupy 32GB of memory for a 256×256 image. The reader is referred to 

Appendix B in (9) for the update equations of this algorithm.  

2.2.5 Reconstructing the Images from Horizontal and Vertical Gradient Estimates  

    Once the image gradients { }L
i

x
i 1=
ŭ and { }L

i

y
i 1=
ŭ  are estimated with the joint Bayesian algorithm, 

the images { }L
ii 1=

x  consistent with these gradients and the undersampled measurements{ }L
ii 1=

Y

need to be found. Influenced by (19), this is formulated as a least squares (LS) optimization 

problem 

(2.18) 

    for Li ,...,1=  where ix xµ  and iy xµ  represent vertical and horizontal image gradients. Using 

Eqs. (2.7) and (2.8) and invoking Parsevalôs Theorem, the optimization problem can be cast into 

k-space 

(2.19) 

  

    where iX , x
iȹ  and y

iȹ  are the Fourier transforms of ix , x
iŭ  and y

iŭ , respectively and 
iW

X  is 

the transform of ix  restricted to the frequency set iW . Based on this, the following solution is 

found by representing Eq. (2.19) as a quadratic polynomial and finding the root with ¤­l  

 

(2.20) 

  

    Finally, taking the inverse Fourier transform gives the reconstructed images{ }L
ii 1

Ĕ
=

x . 

 

2.2.6 Extension to Complex-Valued Images 

In the general case where the underlying multi-contrast images are complex-valued, the linear 

observation model of Eq. (2.9) is no longer valid. Under the assumption that the support of the 
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( )*( ) [ , ] [( , )]
2

j
 = k k k k
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Ö - - -F

ii ɋ i i x y i x yy x y y
Im Im

( )*1
( ) [ , ] [( , )]

2
 = k k k kÖ + - -F

ii ɋ i i x y i x yy x y y
Re Re

if  ( [ , ]) ( [( , )]) , supp k k supp k k  W = W - -i x y i x y

frequency set iW is symmetric, it is possible to decouple the undersampled k-space observations 

belonging to the real and imaginary parts of the signals, 

(2.21) 

 

(2.22) 

 

(2.23) 

 

    Here, [ , ]x yk k index the frequency space and 
*[( )]x yk , k- -iy is the complex conjugate of index-

reversed k-space observations. In the case of one dimensional undersampling, the constraint on 

iWwould simply correspond to an undersampling pattern that is mirror-symmetric with respect to 

the line passing through the center of k-space. After obtaining the k-space dataiy
Re

and iy
Im

belonging to the real and imaginary parts of the i
th
 image

ix , ( )ixRe and ( )ixIm are solved for 

jointly in the gradient domain, in addition to the joint inversion of multi-contrast data, hence 

exposing a second level of simultaneous sparsity in the image reconstruction problem. Final 

reconstructions are then obtained by combining the real and imaginary channels into complex-

valued images.  

2.3 Methods 

    To demonstrate the inversion performance of the joint Bayesian CS algorithm, three data sets 

that include a numerical phantom, the SRI24 brain atlas, and in vivo acquisitions, were 

reconstructed from undersampled k-space measurements belonging to the magnitude images. In 

addition, two datasets including a numerical phantom and in vivo multi-contrast slices, both 

consisting of complex-valued images, were also reconstructed from undersampled measurements 

to test the performance of the method with complex-valued image-domain signals. The results 

were quantitatively compared against the popular implementation by Lustig et al. (6), which does 

not make use of joint information across the images, as well as the M-FOCUSS algorithm, which 

is an alternative joint CS reconstruction algorithm.  
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2.3.1 CS Reconstruction with Extended Shepp-Logan Phantoms 

To generalize the Shepp-Logan phantom to the multi-contrast setting, two additional phantoms 

were generated by randomly permuting the intensity levels in the original 128×128 image. 

Further, by placing 5 more circles with radii chosen randomly from an interval of [7, 13] pixels 

and intensities selected randomly from [0.1, 1] to the new phantoms, the idiosyncratic portions of 

the scans were aimed to be represented with different weightings. A variable-density 

undersampling scheme in k-space was applied by drawing three fresh samples from a power law 

density function, so that the three masksô frequency coverage was only partially overlapping. 

Power law sampling indicates that the probability of sampling a point in k-space is inversely 

proportional to the distance of that point to the center of k-space, which makes the vicinity of the 

center of k-space more densely sampled. To realize this pattern, again Lustig et al.ôs software 

package (6) was used, which randomly generates many sampling patterns and retains the one that 

has the smallest sidelobe-to-peak ratio in the point spread function. This approach aims to create a 

sampling pattern that induces optimally incoherent aliasing artifacts (6).  A high acceleration 

factor of R = 14.8 was tested using the joint Bayesian CS, Lustig et al.ôs gradient descent and the 

M-FOCUSS algorithm. For the gradient descent method, using wavelet and TV norm penalties 

were seen to yield better results than using only one of them. In all experiments, all combinations 

of regularization parameters TVl and waveletl
 
from the set ,0}10,1010{ 234 ---

,
 
were tested and the 

setting that gave the smallest reconstruction error was retained as the optimal one. In the Shepp-

Logan experiment, the parameter setting 310-== waveletTV ll  was seen to yield optimal results 

for the gradient descent method. The number of iterations was taken to be 50 in all of the 

examples. The Bayesian algorithm continues the iterations until convergence, which is 

determined by 

(2.24) 

    where k?D  is the change in log likelihood at iteration k and max?D  is the maximum change in 

likelihood that has been encountered in all k iterations. The convergence parameter h was taken 

to be 
810-  in this example. For the M-FOCUSS method, each image was undersampled with the 

same mask as phantom 1 in the joint Bayesian CS since M-FOCUSS does not admit different 

observation matrices. 
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2.3.2 SRI24 Multi -Channel Brain Atlas Data 

This experiment makes use of the multi-contrast data extracted from the SRI24 atlas (22). The 

atlas features structural scans obtained with three different contrast settings at 3T, 

i. Proton density weighted images: obtained with a 2D axial dual-echo fast spin echo (FSE) 

sequence (TR = 10000 ms, TE = 14 ms) 

ii. T2 weighted images: acquired with the same sequence as the proton density weighted 

scan, except with TE = 98 ms. 

iii.  T1 weighted images: acquired with a 3D axial IR-prep Spoiled Gradient Recalled 

(SPGR) sequence (TR = 6.5 ms, TE = 1.54 ms) 

 

    The atlas images have a resolution of 256×256 pixels and cover a 24-cm field-of-view (FOV). 

Since all three data sets are already registered spatially, no post-processing was applied except for 

selecting a single axial slice from the atlas. Prior to reconstruction, retrospective undersampling
1
 

was applied along the phase encoding direction with acceleration R = 4 using a different 

undersampling mask for each image. Again a power law density function was utilized in selecting 

the sampled k-space lines. In this case, a 1-dimensional pdf was employed, so that it was more 

likely to acquire phase encoding lines close to the center of k-space. Reconstructions were 

performed using Lustig et al.ôs conjugate gradient descent algorithm (with 310-== waveletTV ll ), 

joint Bayesian method (with 910-=h ) and the M-FOCUSS joint reconstruction algorithm.  

 

2.3.3 3T Turbo Spin Echo (TSE) Slices with Early and Late TEôs 

T2-weighted axial multi-slice images of the brain of a young healthy male volunteer were 

obtained with two different TE settings using a TSE sequence (256×256 pixel resolution with 38 

slices,  1×1 mm in-plane spatial resolution with 3 mm thick contiguous slices, TR = 6000 ms, TE1 

= 27 ms, TE2 = 94 ms). Out of these, a single image slice was selected and its magnitude was 

retrospectively undersampled in k-space along the phase encoding direction with acceleration R = 

2.5 using a different mask for each image, again by sampling lines due to a 1-dimensional power 

law distribution. The images were reconstructed using Lustig et al.ôs algorithm with an optimal 

                                                

1
 We use the retrospective undersampling phrase to indicate that k-space samples are discarded synthetically 

from data obtained at Nyquist rate in software environment, rather than skipping samples during the actual scan. 
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parameter setting ( 310-== waveletTV ll ), joint Bayesian CS algorithm (with 910-=h ) and the M-

FOCUSS method.  

2.3.4 Complex-Valued Shepp-Logan Phantoms 

Using four numerical phantoms derived from the original Shepp-Logan phantom, two complex 

valued numerical phantoms were generated by combining the four images in real and imaginary 

pairs. Retrospective undersampling was applied along the phase encoding direction with 

acceleration R = 3.5 using a different undersampling mask for each image. A 1-dimensional 

power law density function was utilized in selecting the sampled k-space lines, making it more 

likely to acquire phase encoding lines close to the center of k-space. Again many sampling 

patterns were randomly generated and the one that has the smallest sidelobe-to-peak ratio in the 

point spread function was retained, but also the sampling masks were constrained to be mirror-

symmetric with respect to the center of k-space. This way, it was possible to obtain the 

undersampled k-space data belonging to the real and imaginary channels of the phantoms 

separately. The images were reconstructed using Lustig et al.ôs algorithm (310-== waveletTV ll ), 

joint Bayesian CS algorithm (reconstructing real & imaginary parts together, in addition to joint 

multi-contrast reconstruction) and the M-FOCUSS method. Further, non-joint reconstructions 

with the Bayesian CS method (doing a separate reconstruction for each image, but reconstructing 

real & imaginary channels of each image jointly) and the FOCUSS algorithm (non-joint version 

of M-FOCUSS) were conducted for comparison with Lustig et al.ôs approach. 

2.3.5 Complex-Valued Turbo Spin Echo Slices with Early and Late TEôs 

To test the performance of the algorithms on complex-valued in vivo images, axial multi-slice 

images of the brain of a young healthy female subject were obtained with two different TE 

settings using a TSE sequence (128×128 pixel resolution with 38 slices,  2×2 mm in-plane spatial 

resolution with 3 mm thick contiguous slices, TR = 6000 ms, TE1 = 17 ms, TE2 = 68 ms). Data 

were acquired with a body coil and both the magnitude and the phase of the images were 

recorded. To enhance SNR, 5 averages and a relatively large 2-mm in-plane voxel size were used. 

A single slice was selected from the dataset and its raw k-space data were retrospectively 

undersampled along the phase encoding direction with acceleration R = 2 using a different mask 

for each image, again by sampling lines due to a 1-dimensional power law distribution. For the 

complex-valued image-domain case, the masks were constrained to be symmetric with respect to 

the line passing through the center of k-space. The images were reconstructed using Lustig et al.ôs 
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algorithm ( 310-== waveletTV ll ), our joint Bayesian CS algorithm (reconstructing real & 

imaginary parts and multi-contrasts together) and the M-FOCUSS method. In addition, non-joint 

reconstructions with the Bayesian CS method (using a separate reconstruction for each image, but 

reconstructing real & imaginary parts of each image together) and the FOCUSS algorithm were 

performed. 

 

 

 

 

 

 

2.4 Results 

2.4.1 CS Reconstruction with Extended Shepp-Logan Phantoms 

Fig. 2.2 presents the reconstruction results for the three algorithms for the extended phantoms, 

along with the k-space masks used in retrospective undersampling. At acceleration R = 14.8, the 

Bayesian algorithm obtained perfect recovery of the noise-free numerical phantom, whereas the 

gradient descent algorithm by Lustig et al. returned 15.9 % root mean squared error (RMSE), 

which we define as 

 

(2.25) 

    where x  is the vector obtained by concatenating all L images together, and similarly xĔ is the 

concatenated vector of all L reconstructions produced by an inversion algorithm. The M-

FOCUSS joint reconstruction algorithm yielded an error of 8.8 %. The reconstruction times were 

measured to be 5 minutes for gradient descent, 4 minutes for M-FOCUSS and 25 minutes for the 

joint Bayesian CS algorithm. 
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Fig 2.2 Reconstruction results with the extended Shepp-Logan phantoms after undersampling 

with acceleration R = 14.8, at 128×128 resolution. (a) Phantoms at Nyquist rate sampling. (b) 

Undersampling patterns in k-space corresponding to each image. (c) CS reconstructions with 

Lustig et al.ôs algorithm yielded 15.9 % RMSE (root-mean-square error). (d) Absolute error plots 

for Lustig et al.ôs method. (e) Reconstructions obtained with the M-FOCUSS joint reconstruction 

algorithm have 8.8 % RMSE. (f) Absolute difference between the Nyquist sampled phantoms and 

the M-FOCUSS reconstruction results. (g) Joint Bayesian CS reconstruction resulted in 0 % 

RMSE. (h) Absolute error plots for the Bayesian CS reconstructions.  

 

2.4.2 SRI24 Multi -Channel Brain Atlas Data 

The results for reconstruction upon phase encoding undersampling with acceleration R = 4 are 

given in Fig. 2.3. In this case, Lustig et al.ôs algorithm returned 9.4 % RMSE, while the error was 

3.2 % and 2.3 % for M-FOCUSS and joint Bayesian CS methods, respectively. The 

reconstructions took 43 minutes for gradient descent, 5 minutes for M-FOCUSS and 26.4 hours 

for the Bayesian CS algorithm. 
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Fig. 2.3. Reconstruction results with SRI24 atlas after undersampling along the phase encoding 

direction with R = 4, at 256×256 resolution. (a) Atlas images at Nyquist rate sampling. (b) 

Undersampling patterns in k-space corresponding to each image. (c)  Applying the gradient 

descent algorithm proposed by Lustig et al. resulted in reconstructions with 9.4 % RMSE. (d) 

Absolute difference between the gradient descent reconstructions and the Nyquist rate images. (e) 

M-FOCUSS reconstructions have 3.2 % RMSE. (f) Absolute error plots for the M-FOCUSS 

algorithm. (g) Joint Bayesian reconstruction yielded images with 2.3 % RMSE. (h) Error plots for 

the joint Bayesian reconstructions. 

 

2.4.3 Turbo Spin Echo (TSE) Slices with Early and Late TEôs 

Fig. 2.4 depicts the TSE reconstruction results obtained with the three algorithms after 

undersampling along phase encoding with acceleration R = 2.5. In this setting, Lustig et al.ôs code 

returned a result with 9.4 % RMSE, whereas M-FOCUSS and joint Bayesian reconstruction had 

5.1 % and 3.6 % errors, respectively. The total reconstruction times were 26 minutes for gradient 

descent, 4 minutes for M-FOCUSS and 29.9 hours for the Bayesian CS algorithm.  
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Fig. 2.4. Reconstruction results with TSE after undersampling along the phase encoding direction 

with R = 2.5, at 256×256 resolution. (a) TSE scans at Nyquist rate sampling. (b) Undersampling 

patterns used in this experiment. (c) Reconstructions obtained with Lustig et al.ôs gradient 

descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for the gradient descent 

reconstructions. (e) M-FOCUSS joint reconstruction yielded images with 5.1 % RMSE. (f) Error 

plots for the M-FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction 

returned 3.6 % RMSE. (h) Error plots for the Bayesian CS reconstructions. 

These results are also included in Table 2.1 as ñPE, (Fig. 4)ò for comparison with reconstruction 

using the same undersampling pattern. 

 

    For brevity, additional results are presented in Table 2.1 from more extensive tests in which 

various undersampling patterns and accelerations were employed. To test the algorithmsô 

performance at a different resolution, the TSE and atlas images were downsampled to size 

128×128 prior to undersampling, and similar RMSE results as the high resolution experiments 
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were noted. The table also includes an experiment with 256×256 TSE scans accelerated along the 

phase encoding with R = 2.5, but using the same undersampling pattern for both images.  

 

Dataset Resolution Undersampling 

method 

Acceleration  

factor R 

RMSE % 

Lustig et 

al. 

M-

Focuss 

Bayesian 

CS 

 
 

TSE 

256×256 Phase encoding (PE) 3 9.7 6.8 5.8 

256×256 Power law 6 8.1 7.8 6.3 

256×256 PE (Fig. 2.4) 2.5 9.4 5.1 3.6 

256×256 PE, same pattern 2.5   4.7 

128×128 PE 2 8.1 3.8 2.1 
 
 

SRI 24 
256×256 Radial 9.2 6.0 4.5 3.0 

128×128 PE 3 7.2 4.2 3.1 

Table 2.1. Summary of additional reconstruction results on the TSE and SRI 24 datasets using the 

three algorithms after retrospective undersampling with various patterns and acceleration factors. 

 

2.4.4 Impact of Spatial Misregistration on Joint Reconstruction 

    Due to aliasing artifacts caused by undersampling, image registration prior to CS 

reconstruction across multi-contrast images is likely to perform poorly. The effect of spatial 

misalignments was investigated by shifting one of the images in the TSE dataset relative to the 

other by 0 to 2 pixels with step sizes of ½ pixels using two different undersampling patterns. The 

first pattern incurs R = 3 acceleration by 2D undersampling with k-space locations drawn from a 

power law probability distribution. In this case, the effect of vertical misalignments was tested. 

The second pattern undersamples k-space at R = 2.5 in the phase encoding direction, for which 

horizontal dislocations were tested. For speed, low resolution images at size 128×128 were used. 

M-FOCUSS and joint Bayesian CS methods were tested for robustness against misregistration 

and that the effect of spatial misalignment was observed to be mild for both (Fig. 2.5).  Even 

though Bayesian CS consistently had less reconstruction errors relative to M-FOCUSS on both 

undersampling patterns at all dislocations, the performance of M-FOCUSS was seen to change 

less relative to Bayesian CS with respect to the incurred translations. For joint Bayesian CS, 

reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law 

sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for 

the M-FOCUSS method error increased from 4.7 % to 4.9 % for power law sampling, and from 

6.2 % to 6.6 % for phase encoding sampling. 
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Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with Bayesian 

CS and M-FOCUSS, one of the TSE images was shifted relative to the other by 0 to 2 pixels with 

step sizes of ½ pixels using power law and phase encoding undersampling patterns. For speed, 

low resolution images with size 128×128 were used. For joint Bayesian CS, reconstruction error 

increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law sampling, and from 5.2 

% to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for the M-FOCUSS 

method error increased from 4.7 % to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for 

phase encoding sampling. 

 

2.4.5 Complex-Valued Shepp-Logan Phantoms 

Absolute values of the reconstruction results after undersampling with a symmetric mask with R 

= 3.5 for the complex-valued phantoms are depicted in Fig. 2.6. For complex signals, the error 

metric
2 2

ĔRMSE 100 /  = Ö -x x x  is used. In this case, Lustig et al.ôs algorithm returned a result 

with 13.1 % RMSE, whereas joint reconstructions with M-FOCUSS and joint Bayesian methods 

had 5.4 % and 2.4 % errors, respectively. The total reconstruction times were 21 minutes for 

gradient descent, 0.5 minutes for M-FOCUSS and 18 minutes for the Bayesian CS algorithm. On 

the other hand, reconstructing each complex-valued image separately with FOCUSS and 

Bayesian CS yielded 6.7 % and 4.6 % RMSE. 
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Fig. 2.6. Reconstruction results with the complex-valued Shepp-Logan phantoms after 

undersampling with acceleration R = 3.5, at 128×128 resolution. (a) Magnitudes of phantoms at 

Nyquist rate sampling. (b) Symmetric undersampling patterns in k-space corresponding to each 

image. (c) Real and imaginary parts of the first phantom (on the left in (a)). (d) Real and 

imaginary parts of the second phantom (on the right in (a)). (e) CS reconstructions with Lustig et 

al.ôs algorithm yielded 13.1 % RMSE. (f) Absolute error plots for Lustig et al.ôs method. (g) 

Reconstructions obtained with the M-FOCUSS joint reconstruction algorithm have 5.4 % RMSE. 

(h) Absolute difference between the Nyquist sampled phantoms and the M-FOCUSS 

reconstruction results. (i) Joint Bayesian CS reconstruction resulted in 2.4 % RMSE. (h) Absolute 

error plots for the Bayesian CS reconstructions.  
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2.4.6 Complex-Valued Turbo Spin Echo Slices with Early and Late TEôs 

Reconstruction results are compared in Fig. 2.7 for the discussed algorithms. Lustig et al.ôs 

method had 8.8 % error upon acceleration by R = 2 with a symmetric pattern, whereas the joint 

reconstruction algorithms M-FOCUSS and joint Bayesian CS yielded 9.7 % and 6.1 % RMSE. 

The processing times were 20 minutes for gradient descent, 2 minutes for M-FOCUSS and 5.2 

hours for the Bayesian CS algorithm. Non-joint reconstructions with FOCUSS and Bayesian CS 

returned 10.0 % and 8.6 % errors.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Reconstruction results for complex-valued TSE images after undersampling along the 

phase encoding direction with R = 2, at 128×128 resolution. (a) Magnitudes of the TSE scans at 

Nyquist rate sampling. (b) Symmetric undersampling patterns used in this experiment. (c) Real 

and imaginary parts of the early echo image (on the left in (a)). (d) Real and imaginary parts of 

the late echo image (on the right in (a)). (e) Reconstructions obtained with Lustig et al.ôs gradient 

descent algorithm have 8.8 % RMSE. (d) Plots of absolute error for the gradient descent 

reconstructions. (e) M-FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error 

plots for the M-FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction 

returned 6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions. 
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    With the same dataset, additional reconstructions were performed to quantify the effect of the 

symmetry constraint on the sampling masks. Both of the late and early TE images were 

reconstructed 5 times with freshly generated, random masks with R = 2 (no symmetry constraints) 

and also 5 times with freshly generated symmetric masks again at R = 2. Using Lustig et al.ôs 

method ( 310l -=TV
) with the random masks yielded an average error of 10.5 %, whereas using 

symmetric masks incurred an average error of 11.5 %. 

2.5 Discussion 

The application of joint Bayesian CS MRI reconstruction to images of the same object acquired 

under different contrast settings was demonstrated to yield substantially higher reconstruction 

fidelity than either Lustig et al.ôs (non-joint) algorithm or joint M-FOCUSS, but at the cost of 

substantially increased reconstruction times in this initial implementation. In contrast to M-

FOCUSS, the proposed algorithm allows for different sampling matrices being applied to each 

contrast setting and unlike the gradient descent method, it has no parameters that need 

adjustments. The success of this algorithm is based on the premise that the multi-contrast scans of 

interest share a set of similar image gradients while each image may also present additional 

unique features with its own image gradients. In Fig. 2.8 the vertical image gradients belonging to 

the TSE scans are presented, where a simple experiment was conducted to quantify the similarity 

between them. After sorting the image gradient magnitudes of the early TSE scan in descending 

order, the cumulative energy in them was computed. Next, the late TSE gradient magnitude was 

sorted in descending order and the cumulative energy in the early TSE gradient was calculated by 

using the pixel index order belonging to the late TSE scan. This cumulative sum reached 95 % of 

the original energy, thus confirming the visual similarity of the two gradients. 

    It is important to note that in the influential work by Ji et al. (9), the authors also consider joint 

reconstruction of MRI images. However their dataset consists of five different slices taken from 

the same scan, so the motivation for their MRI work is different from what is presented here. 

Even though the multislice images have considerable similarity from one slice to the next, one 

would expect multi-contrast scans to demonstrate a yet higher correlation of image features and a 

correspondingly larger benefit in reconstruction fidelity.  

 

 



 
49 

 

 

 

 

 

 

 

 

 

 

   

 

 

Fig. 2.8. (a) Image gradients for the multi-contrast TSE scans demonstrate the similarity under the 

gradient transform. (b) To quantify this similarity, we computed the cumulative energy of the 

image gradient of early TSE scan (TSE1 in TSE1 order). Then we sorted the late TSE scan (TSE2) 

in descending order, and computed the cumulative energy in TSE1 corresponding to the sorted 

indices in TSE2 which gave the curve TSE1 in TSE2 order. The similarity of the curves indicates 

similar sparsity supports across images. 

 

    Two aspects of the proposed Bayesian reconstruction algorithm demand further attention. First, 

relative to the other two algorithms we investigated, the Bayesian method is dramatically more 

time consuming. The reconstruction times can be on the order of hours, which is prohibitive for 

clinical use as currently implemented. As detailed in the Results section, the proposed algorithm 

is about 40 times slower than gradient descent, and about 300 times slower than M-FOCUSS for 

the in vivo data. Future implementations and optimizations that utilize specialized scientific 

computation hardware are expected to overcome this current drawback. Particularly, it is common 

to observe an order of magnitude speed-up with CUDA (Compute Unified Device Architecture) 

enabled Graphics Processing Units when the problem under consideration can be adapted to the 

GPU architecture (23). In a recent work, using CUDA architecture in compressed sensing was 

reported to yield accelerations up to a factor of 40 (24). It is expected that parallelizing matrix 
















































































































































































