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Abstract

This dissertation presents image reconstruction algorithms for Magnetic Resonance Imaging
(MRI) that aims to increase the imaging efficiency. Algorithms that reduce imaging time without
sacrificing the image quality and mitigate image artifacts are proposedjokh of increasing the
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methods is the utilization of prior knowledge on the reconstructed signal. This prior often
presents itself in the form of sparsity with respect to either a prespecified or learned signal

transformation.
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List of Figures

Fig. 2.1. Joint image reconstruction begins with modifying the undersamysieaicke date
to obtain undersamplddspace representations of vertical and horizontal image grad
After finding the hyperparameters via Maximum Likelihood (ML) estimation, the m
of the posterior distributions are assigned to be the gradient estimates. Finally, ima
integratedrom gradient estimates via solving a Least Squares (LS) problem.

Fig 2.2 Reconstruction results with the extended Shegan phantoms afte
undersampling with acceleratiét= 14.8, at 128x128 resolution. (a) Phantoms at Nyc
rate sampling. (b) Undersampling patterng-gpace corresponding to each image. (c)
reconstructions with Lustigtal 6 s al gori t hm vy i e knebasquate
error). (d) Absolute erroplots for Lustigetal. 6 s met hod. (e) R
with the M-FOCUSS joint reconstruction algorithm have 8.8 % RMSE. (f) Absc
difference between the Nyquist sampled phantoms and H#WO®IUSS reconstructio
results. (g) Joint Bayesian CS oestruction resulted in 0 % RMSE. (h) Absolute er

plots for the Bayesian CS reconstructions.

Fig. 2.3. Reconstruction results with SRI24 atlas after undersampling along the
encoding direction witlR = 4, at 256x256 resolution. (a) Atlas imageédNgquist rate
sampling. (b) Undersampling patterns kwspace corresponding to each image.
Applying the gradient descent algorithm proposed by Lustigal resulted in
reconstructions with 9.4 % RMSE. (d) Absolute difference between the gradieahtd
reconstructions and the Nyquist rate images. ((§QLUSS reconstructions have 3.2
RMSE. (f) Absolute error plots for the FJOCUSS algorithm. (g) Joint Bayesii
reconstruction yielded images with 2.3 % RMSE. (h) Error plots for the joint Bay
reconstructions.

Fig. 2.4. Reconstruction results with TSE after undersampling along the phase er
direction withR = 2.5, at 256x256 resolution. (a) TSE scans at Nyquist rate samplin
Undersampling patterns used in this experiment. (c) Reconstructions obtained with
etal 6s gradient descent algorithm have
gradent descent reconstructions. (e)}fADCUSS joint reconstruction yielded images w
5.1 % RMSE. (f) Error plots for the MMOCUSS results. (g) Images obtained with
joint Bayesian CS reconstruction returned 3.6 % RMSE. (h) Error plots for the Ba
CSreconstructions.

Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstructior
Bayesian CS and MOCUSS, one of the TSE images was shifted relative to the oth
0 to 2 pixels with step sizes of % pixels using power law phdse encodin
undersampling patterns. For speed, low resolution images with size 128x128 wer
For joint Bayesian CS, reconstruction error increased from 2.1 % to 2.8 % at 2 pi:
vertical shift for power law sampling, and from 5.2 % to 6.4 92 ptxels of horizontal
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shift for phase encoding sampling; for theA®CUSS method error increased from 4.7
to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for phase encoding samp

Fig. 2.6. Reconstruction results with the complalued $iepplLogan phantoms afte
undersampling with acceleratioR = 3.5, at 128x128 resolution. (a) Magnitudes
phantoms at Nyquist rate sampling. (b) Symmetric undersampling pattekaspace
corresponding to each image. (¢) Real and imaginary parts fifsihehantom (on the lef
in (a)). (d) Real and imaginary parts of the second phantom (on the right in (a)).
reconstructions with Lustigtal 6 s al gori thm yi el ded 1
plots for Lustigetal. 6 s met hod. (s gphtaindrl avithahe MROCUSS joint
reconstruction algorithm have 5.4 % RMSE. (h) Absolute difference between the N
sampled phantoms and the-RDCUSS reconstruction results. (i) Joint Bayesian
reconstruction resulted in 2.4 % RMSE. (h) Absolutereplots for the Bayesian C
reconstructions.

Fig. 2.7. Reconstruction results for completued TSE images after undersampli
along the phase encoding direction wWRfF 2, at 128x128 resolution. (a) Magnitudes
the TSE scans at Nyquist rate samplitb) Symmetric undersampling patterns use
this experiment. (c) Real and imaginary parts of the early echo image (on the left

(d) Real and imaginary parts of the late echo image (on the right in (a)
Reconstructions obtained with Lustef al 6 s gr adi ent desce

RMSE. (d) Plots of absolute error for the gradient descent reconstructions.-(
FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error plots for t-
FOCUSS results. (g) Images obtained wtith joint Bayesian CS reconstruction returr

6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions.

Fig. 2.8. (a) Image gradients for the multintrast TSE scans demonstrate the simile
under the gradient transform. (b) To quantify thigikirity, we computed the cumulativ
energy of the image gradient of early TSE s¢E®H1 in TSE1 orderThen we sorted th
late TSE scan (TSE2) in descending order, and computed the cumulative energy i
corresponding to the sorted indices in TSE4ciwlgave the curv@SEL in TSE2 ordel
The similarity of the curves indicates similar sparsity supports across images.

Fig. 2.9. (a) Lustig et al.o6s algorit
CS with prior returned 5.8% error (d) error for Bayesian CS (e)-sapled prior (f)
R=4 sampling pattern.

Fig.210.(@ala2) Lusti g et ded9.5%esror @b2yabgolute drror plgt
for Lustig et al. (cic2). Joint Bayesian CS with prior returned 4.3% errord@jLerror
plots for Bayesian CS (e) fulyampled PD weighted prior image ®=4 random
undersampling pattern in 1D.

Fig. 3.1.L-c ur v e ;-rdgudarizedaQSM results for a young subjeXtaxis: data

consistency ternﬂﬂ- F'DF GHZin regularized reconstruction for varying values of
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smoothing parametex Y-axis: regularization terﬂG G||1. Settirg &= 5-10° yielded an

underregularized susceptibility map with ringing artifacts (a), whereas usinglQ®
resulted an overegularized reconstruction (c). Fe= 2-10° the operating point with th
largest curvature on the-d¢urve was obtained (bT.his setting was used for the report
&-regularized results.

Fig. 3.2. L.c ur v e refguarizedaQSM results for a young subjextaxis: data

consistency ternﬂﬁ- F'DF GHzin regularized reconstruction for varying values of

smoothirg parameteb. Y-axis: regularization terﬂG G||2. Settingb = 3-10° yielded an

underregularized susceptibility map with ringing artifacts (a), whereas usimg-10?
resulted an overegularized reconstruction (c). Fbr= 1.5-1C%, the operating point witt
the largest curvature on thecurve was obtained (b). This setting was used for
r e p o p-regeldrized results.

Fig. 3. 3. Young (|l eft) and el gregulariged
QS M ( b)regulrized QEM (c). Greater iron concentration yields brighter Q
and FDRI images. Splenium reference ROIs are indicated with a white box on th
QSM slices.

Fig. 3.4. X-axis: Mean £ SD iron concentration (mg/100 g fresh weight) deterrr
postmortenin each ROI(1). Y-axis: Mean + SD&-regularized QSM in ppnileft) and
FDRI in S fTesla (right) indices in all 23 subjects (black squares); the gray c
indicate the mean of the young group, and the open circles indicate the mean of the
group.

Fig. 3.5. Cor r el atyregularizdnl QM ssults orf- tDeRrégs af
interest. Results indicate strong relationship between the two mefRbds 0.976,p =
0.0098). Left: all 23 subjects; middle: young group; right: elderly group.

Fig. 3.6. Mean = S.E.M. of average susceptibility in ppm computed by the twodae
(& egul ar i z e dreg@@iddd QIMp pttom)afor each ROI in the young
elderly groups.

Fig. 3.7 Reconstruction experiment for the piagse constant numerical phantom witr
compartments. (a) Noisy field map from which the susceptibdiestimated. (b) Closec
form QSM solution. (c) Difference between ground truth and closend reconstructions.

Fig. 3.8 In vivo reconstruction at 1.5T. (a) Tissue field map obtained after removir
background phase. (b) Clostim QSM solution.(c) Difference between iterative ar
closedform solutions.

Fig. 4.1. The kcurve traced by the data consistency and Hgaidis penalty terms as tt
regularization parametérvaries. Summation over lipid frequencies for ungyularized
(a), optimally regularized (b) and ovexgularized reconstructions (c) are presented. F
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(d) depicts the analytically computeecurve curvature results for the sample points.

Fig.4. 2.Comparing the different artifact reduction algorithms by taking projections
the lipid resonance frequencies (in dB scale). Gold standard reconstruction is ol
using 20 averages of highesolution data without peripherkispace undersamplin@0
aVGigh, Rnigh = 1, shown in (a)), while the basic proposed method is obtained us
averages of highesolution data without undersampling (2 @gRnigh = 1, shown in (b))
and the refined proposed method usedold undersampled, 2 average higi®olution

data (2 avggn Rnigh = 10, shown in (c)). Lipid suppression results obtained by using
lipid-basis penalty method and only dd@nsity approach are depicted in panels (d)
(e), respectively. Applying no lipid suppression (f) results iressy corrupted spectra.

Fig. 4.3. Comparison between NRMSE values of NAA maps relative to the gold st¢
reconstruction.

Fig. 4.4. Comparison between NRMSE values of NAA maps computed within the
cn? excitation box relative to the NAA maps abted with the OVS method. In (a
reconstruction results obtained using the elihdard Z0 avgign, Rugh = 1) method
(blue) and the OVS spectra (black) belonging to the region inside the red box a
overplotted. In (b), the basic proposed metfidde) and the OVS spectra are compal
The spectra obtained with the refined method (blue) and the OVS results (blac
overplotted in (c). Lipiebasis penalty and OVS spectra are compared in (d).

Fig. 4.5. Comparison of spectra inside the regiomirest marked with the red box th
were obtained with different lipid suppression methods. In (a), reconstruction r
obtained using lipicbasis penalty method (blue) and the gslandard reconstructio
(black) are overplotted. In (b), the basimposed method (blue) and the gstdndard
spectra are presented. The spectra obtained with the refined method (blue) and-tl
standard results (black) are plotted in (c).

Fig. 4.6. Comparison of spectra inside the region of interest marked witbdHtmmx that
were obtained with different lipid suppression methods. Panel (a) overplots reconst
results using lipiebasis penalty method (blue) and the gsti@ndard reconstructio
(black). In (b), the basic proposed method (blue) and the-sjaidard spectra ar
compared. The spectra obtained with the refined method (blue) and thstaguddrd
results (black) are depicted in (c).

Fig. 4.7. Lipid and NAA maps and artifatee spectra for the Cartesian synthe
phantom are shown in (a). In (b¥piral sampling trajectory at Nyquist rate a
reconstruction results upon the application of Hpasis penalty are depicted. Using 1
undersampled spiral trajectory in (c), a higlsolution lipid image was estimated usi
FOCUSS, from which a comhbed image was computed due to the dietsity method
Finally, lipid-basis penalty was applied to this combined image. Panel (d) shows
suppression results when tkespace is sampled only at half of the full resolution |
lipid-basis penalty is appld. For the three reconstruction methods, the example sg
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(plotted in blue) belong to the region of interest marked with the red box, an
overplotted with the artifadtee spectra (in black) for comparison.

Fig. 4.8. Demonstration of approximate orthogonality between metabolite spectra ol
from in vivo OVS scan and lipid spectra from high resolutinrvivo acquisition. In (a),
the lipid and metabolite spectra with the highest orthogonality are platted), the
components of the metabolite spectrum that are orthogonal and parallel to th
spectrum for the best case in (a) are overplotted. The actual metabolite spectrum (
is totally occluded by the orthogonal component (in orange). Intke), lipid and
metabolite spectra that are least orthogonal are depicted. In (d), the orthogonal and
components of the metabolite spectrum are overplotted for the worst case in (c). P
depicts the methodology used in computing the orthdgand parallel metabolite
components.

Fig. 5.1. RMSE at each voxel in slice 40 of subject A upor 3 acceleration an
reconstruction with K<M&EOQUSS (b)e DictioaddrFOEWYSS
trained on subjects A (c), B (d), and C (e). DictigrROCUSS errors in (f), (g) and (¢
are obtained at higher acceleration factoRef 5 with training on subjects A, B and ¢
respectively. Results for the reconstructionR at9 are given in (i), (j) and (k).

Fig. 5.2. RMSE at each voxel in slice b subject B uporR = 3 acceleration ani
reconstruction with K<M&EOQUSS (b)e DictioaddrFOEWYSS
trained on subjects A (c), B (d), and C (e). DictiorR@CUSS errors in (f), (g) and (¢
are obtained at higher acceleration fa@bR = 5 with training on subjects A, B and ¢
respectively. Results for the reconstructionR at9 are given in (i), (j) and (k).

Fig. 5.3. Mean and standard deviation of RMSEs computed on various slices of su
using/b- and DictionaryFOCUSS tained on subject B. Lower panel depicts RMSE m
for four selected slices.

Fig. 5.4. Mean and standard deviation of RMSEs computed on various slices of su
using/b- and DictionaryFOCUSS trained on subject A. Lower panel depicts RMSE r
for four selected slices.

Fig. 5. 5. Top panel gspame diectidRdviltaEase estimated v
Wavelet+TV,Jb-FOCUSS and DictionarifOCUSS with training on subjects A, B and
at R=3. g-space images at directions [5,0,0] (a) and [0,4,0] (c) are depicted for comp
of the reconstruction methods. In panels (b) and (d), reconstruction errors of Wavel
Jb-FOCUSS and dictionary reconstructions relative to the 10 averageséufipledmage
at directions [5,0,0] and [0,4,0] are given.

Fig. 5.6. Panel on top depicts RMSEs of Wavelet+T¥;FOCUSS and Dictionary
FOCUSS atR = 3 and fullysampled 1 average data computed ig-$pace location:
relative to the 10 average data fembject A. Panel on the bottom shows the s:
comparison for the slice belonging to subject B.
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Fig. 5.7. Axial view of whitematter pathways labeled from streamline DSI tractogre
in fully-sampled data (a) and DictionaFCUSS reconstruction & = 3 (b). The
following are visible in this view: corpus callosumforceps minor (FMIN), corpu:
callosum - forceps major (FMAJ), anterior thalamic radiations (ATR), cingulur
cingulate gyrus bundle (CCG), superior longitudinal fasciculparietal bundle (SEP),
and the superior endings of the corticospinal tract (CST). Average FA (c) and volt
number of voxels (d) for each of the 18 labeled pathways, as obtained from the
sampled R=1, green) and DictionaflyOCUSS reconstructed withf8ld undersamling

(R=3, yellow) datasets belonging to subject A. lstteanispheric pathways are indicat
by -AL( I efot )(roirghitR . The pat hforeepssmajar (FMAJ),
corpus callosum forceps minor (FMIN), anterior thalamic radiation (AfRingulum-

angular (infracallosal) bundle (CAB), cinguluntingulate gyrus (supracallosal) bunc
(CCG), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), supe
longitudinal fasciculus- parietal bundle (SLFP), superior longitudinglsciculus -

temporal bundle (SLFT), uncinate fasciculus (UNC).
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Chapter 1

Introduction

1.1 Motivation

Magnetic Resonance Imaging (MR a noninvasive imaging modalitythat is capable of
yielding highresolution and higitontrastimages of soft tissiseof the bodyUnlike Computed
Tomography (CT) or Xay imaging, MRI doesiot employ ionizing radiatiant also does not
require the introduction of a radioactive agastemployed in Positron Emission Tomography
(PET). Therefore, MRI is considetd¢o be a safe imaging modality that finds important clinical
use. However, a majo drawback of MRI is that it is inherently a slow imaging modality,
requiring the subjects to remain motionless within a tight, closed enviroriypecally for half

an hour or longer, depending on the imaging protothls constraint on the imaging time
reduces subject compliance and raises challenges especiallydtripeshd patient populations.

With the introduction of parallel imaging and compressed sen$l&) methods and ultra
high-field systems over the last decadebstantial progress hagen made towardsproved the
image quality and reduced acquisition tirRarallel imaging relies on the information provided
by multiple receive coils that arsensitive to differentparts of the region of interest for
accelerated imaging. Aliasing cauakby subsampled acquisitiongdisentangld with the help of
multiple coil datato yield high quality imagesParallel imaging has made the transition from
being atechniqueto becoming aechnologyas 2 to 3fold accelerated acquisitions in the clidica
setting areubiquitous Parallel imagingnethodscan operate either in the image spée or in
the Fourier spacgk-space)f the object where the data are colledt®d Compressed sensing, on
the other hands a less mature technique in the field of medical imadd®).is a collection of
algoiithms that aim to recover signals from subsampled measurements by applying a-sparsity
inducing prior over the signal coefficient&ven thoughthe ideaof using sparsitypromoting
optimization technique# signal processing and statistissnot new (e.g. (4,5)), it was not
deployed in MR image reconstruction umticently(6). Because of the nelmear nature of th
processing involved, CS reconstruction artifactsrextefully characterized. As such, the clinical

translation of CS has not reached shene level as parallel imaging methods.

More recent developments aimnmergeparallel imaging and CS techniques to allow further

reduction in imaging timeln this domain, L1 SPIRT (7) is a popular algorithm thatombines
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the k-spacedata from multiple coilsvhile enforcing sparsity of coil images with respect to the
wavelet transformSimilarly, it is possible to combine imagikmain parallel imaging with

sparsity priors for improved reconstructi¢).

In the light of theseecent developments, this thesis presents image reconstruction algorithms

that aim to further increase the imaging efficiency of MRiese algorithmachieve

i.  Reduction of the total scan time without sacrificing the inggaity, and
ii.  Mitigation image artifacts due to physiology or MR physics to improve the image quality.

Reduction of imaging time is a wathotivated research goal, leading to increased patient
comfort and reduced cosiEhis goalis investigatedor the followingMR imagingtechniqus,

i.  Structural imaging with multiple contrast preparations: By exploiting image statistics
and similarity between images obtained with different contrasts, improved image
reconstruction from undersampled dataemonstrated

ii. Diffusion Spectrum Imaging (DSI): Diffusion Weighted Imaging (DWI) aims to explore
the brain connectivity by mapping the water diffusion as a function of space. DSI is a
particular DWI method that is able to generate a complete description of diffusion
probability density functions (pdfs), but suffers from significantly long imaging times.
This dissertatiomlemonstratethat by learning the structure of pdfs from training data, it

is possible to substantially reduce the scan time with small cost onabe omality.

Mitigation of image artifacts is yet a different way to achieve increased efficiency, as it
increases the amount of meaningful data for further processing and diagessikson artifact

mitigationare demonstratedithin two contexts,

i. Regularized Quantitative Susceptibility Mapping (QSM): The magnetic property of
the tissues called magnetic susceptibility gives rise to the observed signal phase in
MRI, which is estimatel using an iterative background removal method and
regularized invesion. Regularization helps reduce the streaking artifacts in the
reconstructed susceptibility map, which stem from thgpdied nature of the
relation connecting the phase to the magnetic susceptibility.

ii.  Lipid artifact reduction in Chemical Shift Imagiig@Sl): A major obstacle in CSl is
the contamination of brain spectra by the strong lipid siggrasnd the skullLipid
artifactsare substantially reducdn/ employingan iterative reconstruction method

that makes use of rapidly sampled high frequency content of lipid signals

20



1.2 Outline and bibliographical notes

In the following, the organization of the thesis is presented withf lo@scriptions and

bibliographicalcontributions of each section.

Chapter 2: is concerned withreconstruction of structural MR images from undersampled
observations Versatility of MRI allows images with multiple contrasts preparations to be
acquiredwherein each contrast emphasizes @etiasue typesCollection of such multcontrast
data facilitates diagnosis and finds frequent clinical usthis setting, it is assumed that data are
acquiredwith a single receive coil, hengmrallel imaging is outside the scope of this chapter.
One optiorfor recovey of undersampled multontrast images is to employ compressed sensing
on each contrast independently. These images belong to the same underlying physiology, so they
are expected to share common tissue bound&gEsising on this pot, this chapter presents a
joint reconstruction method capableiofproving compressed sensing reconstruction quality by
exploiting the shared informatiocontentacross contrasts his method is based on Bayesian
compressed sensing, which interpretsrapainducing reconstructiorwithin a probabilistic
framework An extension to joint reconstruction is also presensaate the imaging sequences
involved in the multicontrastprotocol may have different acquisition speedsiight be possible
to obtah a fully-sampleddatasetising a fast sequence in addition to the undersampled contrasts.
By using the fullysampled image tinitialize the reconstructionfurther improvement in joint

reconstruction quality is demonstrated.
The proposed methods take place in,

1 B. Bilgic, V.K. Goyal, E. AdalsteinssoMulti-contrast Reconstruction with Bayesian
Compressed Sensinglagnetic Resonance in Medicine, 2011; 66(6):16615.

1 B. Bilgic, V.K. Goyal, E. Adalsteinssodoint BayesiarCompressed Sensing for Multi
contrast Reconstructigrinternational Society for Magnetic Resonance in Medicine 19th
Scientific Meeting, Montreal, Canada, 2011, p. 71.

1 B. Bilgic, E. AdalsteinssonJoint Bayesian Compressed Sensing with Prior Estimate
International Society for Magnetic Resonance in Medicine 20th Scientific Meeting,
Melbourne, Australia, 2012, p. 75.

Chapter 3: focuses on Quantitative Susceptibility Mapping (QSMiich is an MRI based

imaging technique that provides valuable quantitation of tissue iron concentration and vessel

oxygenation. However, susceptibility cannot be observed directly with MRI. Reconstruction of
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underlying susceptibility maps from measured Mgnd phaseis a challenging problem that
requires deconvolution of an-flosed kernelHence, this problem benefits from regularization
that reflects prior knowledge on the tissue susceptib#lisysusceptibility is a feature tied to the
paramagnetic proptes of the underlying tissuet,is expected to vary smoothly within tissue
compartments.Using regularization based on spatial gratieof the susceptibility maps
facilitates the deconvolutiomn a group study where the brain iron concentration imabaging

was investigatedhis chapter showthat accurate quantification is possiktih this regularized
deconvolutionapproach Further, an algorithm that solves the regularized inversion problem in
less than 5 seconds proposedwhich is a signiftant speed up relative to proposed iterative
methods that catakeup to an hour.

The conterg of this chapteareincludedin,

1 B. Bilgic, A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, E. AdalsteinssbiR| Estimates
of Brain Iron Concentration in Normalging Using Quantitative Susceptibility Mapping
Neurolmage, 2012; 59(3):262%35.

1 B. Bilgic, A.P. Fan, E. AdalsteinssoQuantitative Susceptibility Map Reconstruction
with Magnitude Prior International Society for Magnetic Resonance in Medicine 19th
Scientific Meeting, Montreal, Canada, 2011, p. 746.

1 B. Bilgic, I. Chatnuntawech, A.P. Fan, E. Adalsteinsfegularized QSM in Seconds
submitted to International Society for Magnetic Resonance in Medicine 21st Scientific
Meeting, Salt Lake City, Utah, U§ 2013.

1 B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;
Fast Regularized Reconstruction Tools for QSM and, IBWRM Workshop on Data
Sampling & Image ReconstructioBedom, Arizona, USA, 2013, accepted

Chapter 4: proposs two lipid artifact suppression methods for C8Vhile MRI enables
spatial encoding of the human tissue$Sl also provides encoding in magnetic resonance
frequency. At each voxel, this yields adilnensional spectrum of relative concentrations of
biochemical mwbolites, each with a slightly different resonant frequency. The ability to map
biochemical metabolism proves to be critical in cancer, Alzheimer's disease and multiple
sclerosis. The dominant challengeG#l is in the low signal of the metabolites oferest. Since
signatto-noise ratio (SNR) is proportional to the voxel size due to averaging effect, large voxels
are required to lower the noise threshold, thereby constraining the voxel sizes in spectroscopy to

be much larger than those of MRI (1 teonrpared to 1 mr). The resolution constraint poses a
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significant difficulty to metabolite detection as it leads to signal contamination from the
subcutaneous lipid layemhis chaptempropose two postprocessing methathat exploit prior
knowledge about fid and metabolite signals to yield artifdite metabolite spectrahese
algorithns rely on two observations: lipid signals are constrained to reside around the skull, and
metabolite and lipid spectra are approximately orthogdkethe lipids are comsained to reside

on a ring in space and within a certain range in resonémcpiency they can be well
approximated from undersampled data using spaesityrcing reconstructionThis permits
estimation of higkresolution lipid signals, effectively redimg the ringing artifactsCombined

with iterative reconstruction that enforces orthogonality among metabolites in the bratmeand
lipid spectra, artifactree metabolite maps atieusobtained.

The contributions in this chapter can also be found in,

1 B. Bilgic, B. Gagoski, E. Adalsteinssohipid Suppression in CSI with Spatial Priors
and HighlyUndersampled Peripheral-gpace Magnetic Resonance in Medicine, 2012;
DOI: 10.1002/mrm.24399.

1 B. Bilgic, B. Gagoski E. AdalsteinssorLipid Suppression in CSl ith Highly-
Undersampled Peripheral$pace and Spatial Priordnternational Society for Magnetic
Resonance in Medicine 20th Scientific Meeting, Melbourne, Australia, 2012, p. 4455.

Chapter 5: Diffusion Weighted Imaging (DWI) is a widely used method todgt white
matter connectivity of the brain. Diffusion Tensor Imaging (DTI) is an established DWI method
that models the water diffusion in each voxel as a univariate Gaussian distribution. Fiber
tractography algorithms are employed to follow the majorreigetor of the tensor fit across
neighboring voxels. However, the diffusion tensor model is unable to characterize multiple fiber
orientations within the same voxel, which constitute over 90% of white matter v&atiser
than modeling the diffusion, Difsion Spectrum Imaging (DSI) offers a complete description of
the diffusion probability density function (pdf). This provides DSI with the capability to resolve
complex distributions of fiber orientations, thus overcoming the simgdmtation limitationof
DTI. The tradeoff is thatwhile a typical DTl scan takes ~5 minutes, DSI suffers from
prohibitively long imaging times of ~50 minutes. By relying on prior information extracted from
a training datasethis chaptedemonstratedramaticreduction in D$scan timewhile retaining
the image qualityThis high quality reconstruction is made possible by the priors encoded in a

dictionary (created from a separately acquired training DSI dataset) that captures the structure of
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diffusion pdfs.Further,two efficient dictionarybased reconstruction methothat attain 1000

fold computation speedp relative tdterative DSI compressed sensing algoritlarepresented.
The methods introduced in this chaptan also be found jn

1 B. Bilgic, K. Setsompop, J. Cohé&kdad, A. Yendiki, L.L. Wald, E. Adalsteinsson;

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive

Dictionaries Magnetic Resonance in Medicine, 2012; 68(6):174%4.
1 B. Bilgic, I. Chatnuntawech, K. Setspop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;
Fast Diffusion Spectrum Imaging Reconstruction with Trained Dictionasidsmitted to
IEEE Transactions on Medical Imaging.
1 B. Bilgic, K. Setsompop, J. Cohé&dad, V. Wedeen, L. Wald, E. Adalsteinsson;

Accekrated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive

Dictionaries 15th International Conference on Medical Image Computing and Computer

Assisted Intervention, 2012; LNCS 751281
1 B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Caulel. Wald, E. Adalsteinsson;

Fast DSI Reconstruction with Trained Dictionatiesibmittedto International Society

for Magnetic Resonance in Medicine 21st Scientific Meeting, Salt Lake City, Utah, USA,

2013.

1 B. Bilgic, I. Chatnuntawech, K. SetsompopFSCauley, L.L. Wald, E. Adalsteinsson;
Fast Regularized Reconstruction Tools for QSM and, IBVWRM Workshop on Data
Sampling & Image ReconstructioBedom, Arizona, USA, 2013, accepted

Chapter 6: propo®s potential extensions to the methodsroduced throughout the
dissertation.Higher acceleration factors may be achieved by extendingmthki-contrast
reconstruction idea to include parallel imagiMulti-modality imaging (e.g. MARPET) may also
benefit from joint reconstructiorfEmploying magnitudenformation in QSMdeconvolutionmay

improve the conditioning of theéversion Quantitative susceptibility venography with vessel

tracking may bdeasiblewith the help of tracking algorithms in fiber tractography literature. In

the context of spectroscapiimaging, parametric signal models may provide further

regularizationin lipid artifact suppressiorfinally, through the combination of parallel imaging

and dictionarybased reconstruction, even higher acceleration factors in DSI acquisitions may

becomeachievable
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Chapter 2

Joint Reconstruction of Multi-Contrast Images

Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region

of interest under several different contrast preparations. diapterpresents a reconstruction
algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from
undersampledk-space data with higher fidelity than when the images are reconstructed either
individually or jointly by a previously proged algorithm, MFOCUSS. The joint inference
problem is formulated in a hierarchical Bayesian setting, wherein solving each of the inverse
problems corresponds to finding the parameters (here, image gradient coefficients) associated
with each of the imaged3he variance of image gradients across contrasts for a single volumetric
spatial position is a single hyperparameter. All of the images from the same anatomical region,
but with different contrast properties, contribute to the estimation of the hypmetara, and

once they are found, thespace data belonging to each imageused independently to infer the
image gradients. Thus, commonality of image spatial structure across contrasts is exploited
without the problematic assumption of correlation asr@ontrasts. Examples demonstrate
improved reconstruction quality (up to a factor of 4 in no@ansquare error) compared to
previous compressed sensing algorithms and show the benefit of joint inversion under a

hierarchical Bayesian model.

2.1 Introduc tion

In clinical applications of structural MR, it is routine to image the same region of interest under
multiple contrast settings to enhance the diagnostic power of T1, T2, and-geatsity weighted
imagesHerein a Bayesian framework that makes o&éhe similarities between the images with
different contrastssi presented tqointly reconstruct MRI images from undersampled data
obtained ink-space.This method applies the joint Bayesian compressive sensing (CS) technique
of Jiet al.(9) to the multicontrast MRI setting with modifications for computational &rspace
acquisition efficiency. Compared to convemil CS algorithms that work on each of the images
independently (e.g(6)), this joint inversion technique is seen to improve the reconstruction
quality at a fixed undersampling ratio and to produce similar reconstruction results at higher

undersampling ratios (i.e., with less data).
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Conventional CS proaes images using sparse approximation with respect to an appropriate
basis; with gradient sparsity or wavetlktmain sparsity, the positions of nonzero coefficients
correspond directly to spatial locations in the image. A natural extension to explcitirstiu
similarities in multicontrast MRI is to produce an image for each contrast setting while keeping
the transforrdomain sparsity pattern for each image the same. This is dalled or
simultaneoussparse approximation. One of the earliest apptinat of simultaneous sparse
approximation was in localization and used an algorithm based on convex relgg8jioAn
early greedy algorithm was provided by Trogtpal. (11). Most methods for simultaneous sparse
approximation extend existing algorithms such as Orthogonal Matching Pursdft)(&OCal
Underdetermined System Solver (FOCU$S) or Basis Pursuit (BR)L2) with a variety of ways
for fusing multiple measurements to recover the nonzero transform coefficients. Popular joint
reconstruction approaches include Simultaneous OMP (SQMP)M-FOCUSS(13), and the
convex relaxation algorithm ifiL4). All of these algorithms provide significant improvement in
approximation quality, however they suffer from two important shortcomingsh#orcurrent
problem statementirst, they assume that the signals share a common sparsity support, which
does not apply to the multontrast MRI scans. Even though these images have nonzero
coefficients in similar locations in the transform domain, assuming perfect overlap in itsigyspa
support is too restrictive. Second, with the exceptior(1&j, most methods formulate their
solutions under the assutign that all of the measurements are made via the same observation
matrix, which inthis context would correspond to sampling the s&mspace points for all of the
multi-contrast scans. As demonstchtieere observing different frequency sets for eaclage

increasesheoverallk-space coverage and improves reconstruction quality.

The general joint Bayesian CS algorithm recently presented by Ji &) addresses these
shortcomings and fits perfectly to the midéntrast MRI contexiGiven the observation matrices
0,1 C"Mwith K, representing the number kfspace points sampled for tiftimage andv
being the number of voxels, the linear relationship betweek-fpace data and the unknown
images can be expressed ys=U ;X; wherei =1,....L indexes the. multi-contrast scans and
y, is the vector ofk-space samples belonging to ti"ﬂeimagexi . Let 0 and U’ denotethe

vertical and the haorizontal image gradiemthich are approximately sparse since the MRI images

are approximately piecewise constant in the spatial domain. In the Bayesian gedtiagk is to
provide a posterior beliebf the values of the gradients’ and U’ , with the prior assumption

that these gradients should be sparse and the reconstructed images should be consistent with the

acquireck-space data. Each image formation problem (for a single contrast) constitutes an inverse
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problem of the forny, - X;, and the joint Bayesian algorithm aims to share information among

these tasks by placing a common hierarchpcalr over the problems. Such hierarchical Bayesian
models can capture the dependencies between the signals without imposing correlation, for
example by positing correlation of variances between-mexan quantities that are conditionally
independent give the hyperparameters. Data from all signals contribute to learning the common
prior (i.e., estimating the hyperparameters) in a maximum likelihood framework, thus making
information sharing among the images possible. Given the hierarchical prior, theluadi
gradient coefficients are estimated independently. Hence, the solution of each inverse problem is
affected by both its own measured data and by data from the other tasks via the common prior.
The dependency through the estimated hyperparameterssentially a spatiallyarying
regularization, so it preserves the integrity of each individual reconstruction problem.

Apart from making use of the joint Bayesian CS machinery to improve the image
reconstruction quality, the proposed method preseet®ral novelties.First, the Bayesian
algorithmis reducedo practice on MRI data sampledkrspace with both simulated amdvivo
acquisitions. In the elegant work by &t al (9), their method was demonstrated on CS

measurements made directly in the sparse transform domain as oppose#-$pabe domain

that is the natural source of raw MRI data. The observatignaere obtained viay, =0 ;d

where d; are the wavelet coefficients belonging to th¢est image. But in all practical settings of

MRI data acquisition, the observations are carried out inkthpace corresponding to the
reconstructed images themselves, i.e.kispace data belonging to the wavelet transform of the
imageis not accessibl In themethod as presented here, measurements of the image gracdkents
obtainedby a simple modification of thi&-space data and thisis possible toovercome this
problem. After solving for the gradient coefficisnwith the Bayesian algorithrimages that are
consistent with these gradierdase recoveredh a leastsquares setting. Secondthe presented
version accelerates the computationaiymanding joint reconstruction algorithm by making use
of the Fast Fourier Transform (FFT) to replace sarfithe demanding matrix operations in the
original implementation by Jet al This makes it possible to use the algorithm with higher
resolution data than with the original implementation, which has large memory requirements.
Also, partiallyoverlappingundersampling patternare exploitedto increasethe collective k-
space coverage when all images are considéraein it isrepored that this flexibility in the
sampling pattern design improves the joint CS inversion qudiigitionally, the algoritm is
generalizedo allow inputs that correspond to compledued imagesFinally, these finding are

compard with the popular method i(6) and with the MFOCUSS joint reconstruction scheme.
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In addition to yielding smaller reconstruction errors relative to either method, the proposed

Bayesian algorithm contains no parameters that need tuning.

2.2 Theory
2.21 Compressed Sensing in MRI

Compressed sensing has received abundant recent atiarttienMRI community because of its
demonstrated ability to speed up data acquisition. Making use of CS theory to this end was first

proposed by Lustigt al. (6), who formulated the inversion problem as
¥=argmin ||YTX||1  TIK) sty Fx|, (2.1)

where (q is the wavelet basisTV(.) i s t noren ofdiscrete gradients as a proxy for total
variation, b trades off wavelet sparsity and gradient spardiy, is the undersampled Fourier

transform operator containing only the frequenaigs W, and € is a threshold parameter that
needs to be tuned for each reconstruction fBisis. constrained inverse problem can be posed as

an unconstrained optimization progré@

g=argmin |y -FoX[; Aee [YOX| ATV ED (2.2)

wherel ...t @Nd | 1, are wavelet and total variation regularization parameters that again call

for tuning.

2.2.2 Conventional Compressed Sensing from a Bayesian Standpoint

Before presening the mathematical formulation that is the basisth@ proposednethod, this

section biefly demonstrates that it is possible to recover the conventional CS formulation in Eq.
2.2 with a Bayesian treatment. For the moment, consider abstractly that a sparse bigh¥l

that is observed by compressive measurements via the raakrik “°™ , whereK <M is under
considerationThe general approach of Bayesian CS is to find the most likely signal coefficients
with the assumptions that the signal is approximately sparse and that the data are corrupted by
noise with a known distribution. The sparsity assumption is reflected by the prior defined on the

signal coefficients, whereas the noise model is expressed vi&eliedod term.
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As a means to justify Eq2.2), a commonlyused signal prior and noise distributiame

presented The dataare modeledas being corrupted by additive white Gaussian noise with

variances % via y=0x+n. In this case, the probability of observing the datagiven the

signal X is a Gaussian probability density function (pdf) with méar and variances 2,

) — .
p(y|x):(2p §) ex% —|y-a x||2§ (2.3)

which constitutes the likelihood term. To formalite belief that the signalX is sparse, a
sparsitypromoting prioris placedon it. A common prior is the separable Laplacian density
function (16)

vw_ooa M Q
p(x)=( 72" exgg 1 & 1% 13 (24)
¢ i T
I nvoking Bayesd theorem, the posterior for
likelihood and the prioas
X )plx (2.5)
o(x| y)= IO(yllo ))/IO()

The signal that maximizes this posterior probability via maximanposteriori (MAP)
estimationis soughtfor. Since thedenominator is independent %f the MAP estimate can be

found by minimizing the negative of the logarithm of the numerator:

Xyap = argminy - Ux||§ +252/|x], (26)

This expression is very similar to the unconstrained convex optimization formulation in Eq.
(2.2); it is possibleobtain Eq. 2.2) with a slightly more complicated prior that the wavelet
coefficients and gradient of the signal of interest follow Laplacian distributions. Therefore, it is
possible to view the convex relaxation CS algorithms as MAP esmath a Laplacian prior on
the signal coefficients. It is possible to view many algorithms used in CS as MAP estimators with

respect to some prigt.7).
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2.2.3 Extending Bayesian Compressed Sensing kulti -Contrast MRI

The Bayesian analysis in the previous section has two significant shortcomings. First, it is
assumed that the signal of interest is sparse with respect to the base coordinate system. To get the
maximum benefit from estimation with respect to a separadphalsprior, it is critical to change

to coordinates in which the marginal distributions of signal components are highly peaked at zero
(18). For MR image formation, we aim to take advantage of the highly peaked distributions of
imagedomain gradients, and show how to modifgpace data tobtain measurements of these
gradients. Second, the optimal MAP estimation through BEd) (requires knowledge of
parameterg ands. The proposednethod eliminates the tuning of such parameters by imposing

a hierarchical Bayesian model in which and s are modeled as realizations of random variables;
this introduces the need for fAhyperegpbelowir sd at
suffices to eliminate tuning of the hyperpriors using a principle of least informativeness. Along
with addressing these shortcomings, modifications for joint reconstruction across contrast

preparationsre also discussed

In the multicontrast setting, the signa{sg}iL:li RM represent MRI scans with different

image weightings, e.g. T1, T2 and proton density weighted intaggg have been obtainédr
the same region of interest. These are not sparse directly in the image domain. Therefore, it is

beneficial to cast the MRI iages into a sparse representation to make use of the Bayesian
formalism. The fact that the observation matriégg I C*"™ in MRI are undersampled Fourier

operators makes it very convenient to use spatial image gradientsp@ss#ying transform

(19,20). To obtain th&k-space data corresponding to vertical and horizontal image gradients, it is

sufficient to modify the data;, according to

Fo 0(w,u) =(1- €M)y (w,u) 1y (27

Fu 0¥ (w,u) = (- &My (wu) + Y (2.8)

where j=+-1; 0¥ and i’ are thei" image gradients;y* and y’ are the modified
observations; and# and ¢ index the frequency space of timeby m pixel images, with
nGn=M . To solve Eq.Z.2), Lustiget al. (6) proposes to use the conjugate gradient descent
algorithm, for which it is relatively straightforward to incorporate the TV norm. But algorithms
that do not explicitly try to minimize awbjectivefunction (e.g. OMP and Bayesian CS) will need
to modify thek-space data according to Eg8.7]) and 2.8) to m&e use of the Total Variation

penalty in the form of spatial derivatives.
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Secondly, we need to express the likelihood term in such a way that both real and imaginary

parts of the noisen | C* in k-space are taken into account. We rearrange the linear
H X — = X
observationsy;” =F, U +n; as

eRe(y)@_eRe(F, )a . éRe(n)g

= : 29
Sm (e gmFS " §m(n)d @9

for i=1...L, where Re(.) and Im(.) indicate real and imaginary parts with the
understanding that we also have an analogous set of linear equations for the horizontal gradients
Y . For simplicity, we adopt the notation

Y =0, G* + N, (2.10)

whereY*,N; I R?¢, andd ;I R*M correspond to the respective concatenated variables
in Eg. 2.9). With the assumption that both real and imaginary parts ds¢pace noise are white

Gaussian with some varianee’ , the data likelihood becomes

p(YiX |Uix152):(2p §)> “ ex% %”Yix - 0,0

29 (2.11)

With these modifications, it is now possible to compute the MAP estimates for the image
gradients by invoking Laplacian priors over them. Unfortunately, obtaining the MAP estimates
for each signal separately contradicts witk ultimate goal to perform jat reconstruction. In
addition, it is beneficial to have a full posterior distribution for the sparse coefficients rather than
point estimates, since having a measure of uncertainty in the estimated signals leads to an elegant
experimental design methods argued in(16), it is possible to determine an optimlaspace
sampling pattern that reduces the uncertainty in the signal estimates. But since the Laplacian prior
is not a conjugate distribution to the Gaussian likelihood, the resulting posterior will not be in the
same family as the prior, hence it will na possible to perform the inference in closed form to
get a full posterior. The work by &it al. (9) presents an elegant way of estimating the image
gradients within a hierarchical Bayesian model. This approach allows information sharing
between the muHtontrast scans, at the same yields a full posterior estimate for the sparse
coefficients. Inthe following section, the algorithm used for finding this distributien

summarized and th@mplete image reconstruction schemdepictedn Fig. 2.1.
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Fig. 2.1. Joint image reconstruction begins with modifying the undersampigrhde data to

obtain undersamplell-space representations of vertical and horizontal image gradients. After
finding the hyperparameters via Maximum Likelihood (ML) estimation, the mednthe
posterior distributions are assigned to be the gradient estimates. Finally, images are integrated
from gradient estimates via solving a Least Squares (LS) problem.

2.2.4 Bayesian Framework to Estimate the Image Gradient Coefficients

Hierarchical Bayesian representation provides the ability to capture both the idiosyncrasy of the
inversion tasks and the relations between them, while allowing closed form inference for the
image grdients. According to this model, the sparse coefficients are assumed to be drawn from a

product of zero mean normal distributions with variances determined by the hyperparameters
0={a,}

J ]:1

P(Uix | U)= CM) N (dﬁ,- |0,a; 1) (2.12)
j=1

where N (C'I)O,a'jl) is a zero mean Gaussian density function with variem'p]e In order to

promote sparsity in the gradient domain, Gamma priors are defined over the hyperpardmeters
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Ilab)=C)Gad [ab)= ()2
p(Ula, )—(jz)lGa(Uan, )_OG(a)

=1

U exy(- bU,) (2.13)

where (.) is the Gamma function, aralandb are hypeipriors that parametrize the Gamma

prior. To see why the combination of Gaussian and Gamma priors will promote a sparse
representation, consider marginalizing over the hyperparamédtersbtain themarginal priors

acting onthe signal coefficientf,16,21)

p(t";) = AP 19)p(Y; |a,b)dy, (2.14)

which turn out to yield improper priors of the fonp(ﬂifj )" 1| Gi’fj |in the particular case of
uniform hyperpriors a=b =0. Similar tothe analysis for the Laplacian prior, this formulation
woul d i nt rregdanizereof terforma '}"zllogl 0 | if a nonjoint MAP solutionwas
sought for Here,it shouldalso benoted that the hyperparametekdare shared across the multi
contrast images, eaca controlling the variance of all gradient coefficients{ﬁi’fj }iL:lthrough
Eg.(212). Inthiscasgg;060 s di verging to infin ij"tlogatidn ofll i e s
images are zero, due to the zemean, zerevariance Gaussian prior at this location. On the other
hand, a finiteaj does not constrain all pixels in thejIh location to be noizero, which allows

the reconstruction algorithm to capture the diversity of sparsity patterns across theomtudtst

scans.

In practice, the noise varianae® would also need to be estimatslit propagates via the data
likelihood term to the posterior distribution of gradient coefficients @%j. Even though it is
not difficult to obtain such an estimate in image donifitne full k-space datavere available
this would not be straightforward with undersampled measurements. Thereforeiniploet al
(9), the formulationis slightly modifiedso that the noise variancan beanalyticallyintegrated

out while computing the posterior. This is made possible by including the noise precision

a, =s 2 in the $gnal prior,

p(nix |G, Uo)z (M) N (di),(j |O’a}1‘5"61) (2.15)
j=1

A Gamma prior over the noise precision paramatgis defined as

dC
p(a, |c,d)=Gaa,|c,d) =

O ad'exp(- da,) (2.16)
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In all of the following experiments, the hypgiriors are set toc =d =0 to express that na
priori noise precision is favorea@ s t hey | ead t o tirhpeoperfigri@a st i nf

p(a,|c=0,d=0)" 1/a,. The choice of priors in Eq.0.5-16) allows analytical compution
of the posterior for the image gradiep(&* |Y;*,U), which turns out to be a multivariate

Studentt distribution with mean g, =E,0Y,* and covariancg =0 /0, +A)" with

A =diag@a,,...ay ). This formulation is seen to allow robust coefficient shrinkage and

information sharing thanks to inducing a heday in the posteriol(9). It is worth noting that
placing a Gamma prior on the noise precision does not change the additive nature of observation
noise, however a heaviailed t-distribution replaces the normal density functiorexplaining

this residual noise. This has been seen to be more resilient in allowing outlying measuif@ments

Now that an expression for the postegod* |Y.*,U) is obtainedthe remaining work is to

find a point estimate for the hyperparametdd R™ in a maximum likelihood (ML)
framework. This is achieved by searching for the hyperparameter setting that makes the
observation of thé&-space data most likely, and such an optimization process is ealehce
maximizationor typell maximum likelihoodmethod(9,16,21). Thereforethe hyperparameters

that maximize

L L
LO=4 p(r* 10 =4 fp(a, |2 b)p( |U.a,) p(y* |1, a,)dida,  (2.17)
i=1 i=1

are sought for.lt should benoted that data from allL tasks contribute to the evidence
maximization procedure via the summation over conditional distributions. Hence, the information
sharing across the images occurs through this collaboration in the maximum likelihood estimation

of the hyperparameters. Onitee point estimates are constituted using all of the observations, the

posterior for the signal coefficient§' is estimated based only on its relakespace dat&’;* due

tog, =F,0; Y*. Thus, all of the measurements are used in the estimation of the

hyperparameters, but only the associated data are utilized to constitute an approximation to the

gradient coefficients.

Ji et al. show that it is possible to maximize ER.1(7) with a sequential greedy algorithm, in
which the starting point is single basis vector for each signal, then the basis function that yields
the largest increase in the log likelihodd added at each iteration. Alternatively, a
hyperparameter correspondirga basis vector that is already in the dictionary of current bases

can be updated or deleted, if this gives rise to the largest increase in the likelihood at that
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iteration. A final refinement to Jiet al 6 s Bay e s i ans a@d8dbyaréplaang thé h m
observation matriceéﬂ i}iL=l thatareneeadto be storal with the Fast Fourier Transform (FFT).

This enables workg with MRI images of practical sizes; otherwise each of the observation
matrices would oagpy 32GB of memory for a 256x256 imagEhe readeris referredto
Appendix B in(9) for the update equations of this algorithm.

2.2.5 Reconstructing the Images from Horizontal and Vertical Gradient Estimates

Once the image gradien{élix}iL:l and {ﬁiy}iLzl are estimated with the joint Bayesian algorithm,

the ima\ges{xi }iLzl consistent with these gradients and the undersampled measw{é’m}#gts

need to be foundnfluenced by(19), this is formulatedas a least squares (LS) optimization
problem

£ =argxmin z+“uyxi - Uiyui +/“Fvvi Xi =Y Hi (2.18)

~ X
My Xi - U

for i =1,...L where l,x; and p,X; represent vertical and horizontal image gradients. Using

Egs.@7)andR8) and invoking Parseval 6s Theor em,
k-space
% =argmine- e 0, - i +fa- e, @+ Y (ag)

where X;, ¢f and ¢ are the Fourier transforms of , G and i, respectively andX,, is

the transform ofx; restricted to the frequency s . Based on this, the following solutios

foundby representing Eq2(19) as a quadratic polynomial and finding the root with ©

Xw if (w,u)l W
(1_ eZM'W/n)q?( +(1_ ez,q'u/m)cﬁ/

2 . 2
+‘1_ e Zgu/m‘

¥ (W) = (2.20)

otherwise

——) —— :

‘1_ g 2dwin

Finally, taking the inverse Fourier transform gives the reconstructed il{TEéiLgls

2.2.6 Extension to ComplexValued Images

In the general case where the underlying radtitrast images are complealued, the linear

observation model of Eq2.9) is no longer valid. Under the assumption that the support of the
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frequency setWV, is symmetric, it is possibletdecouple the undersampledpace observations

belonging to the real and imaginary parts of the signals,

if supgW[ k k) =sup W sk ). (221)
Yo [ Fy Re(x)) = %C'Qy[k K10 ks k) (2.22)
Im — 'j ; *

Y CRImO) = - Qyik kT Y ks ki) (223)

Here, [k,, k ] index the frequency space anyd[(- k, , -k,)] is the complex conjugate of index

reversedk-space observationtn the case of one dimensional undersamplihg, constraint on

W, would simply correspond to an undersampling pattern that is rsiyrametric with respect to

the line passing through the centerke$pace. After obtaining thk-space datgiiRe and yiIm
belonging to the real and imaginary parts of ifPuiamagexi , Re(x;)andim (x;) are solved for

jointly in the gradient domain, in addition to the joint inversion of rugdtitrastdata, hence
exposing a second level of simultaneous sparsity in the image reconstruction problem. Final
reconstructions are then obtained by combining the real and imaginary channels into €complex
valued images.

2.3 Methods

To demonstrate the inversion performance of the joint Bayesian CS algorithm, three data sets
that include a numerical phantom, the SRI24 brain atlas, iandivo acquisitions, were
reconstructed from undersampliegpace measurements belonging to rtiegnitude imagedn
addition, two datasets including a numerical phantom iandivo multi-contrast slices, both
consisting of complexalued images, were also reconstructed from undersampled measurements
to test the performance of the method with compleixed imagaelomain signals. The results
were quantitatively compared against the popular implementation by letistig6), which does
not make use of joint information across the images, as well as-#@QUSS algorithm, which

is an alternative joint CS reconstruction algorithm.
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2.3.1 CS Reconstrution with Extended SheppLogan Phantoms

To generalize the Shefymgan phantom to the multiontrast setting, two additional phantoms

were generatedby randomly permuting the intensity levels in the origindB3128 image.

Further, by placing 5 more circles with radii chosen randomly from an interval of [pixe3$

and intensities selected randomly fr¢0rl, 1] to the new phantoms, the idiosyncratic portions of

the scanswere aimeé to be representedvith different weightings. A variabldensity

undersampling scheme kaspace was applied by drawing three fresh samples from a power law
density function, so that the three masksdo fred
Powe law sampling indicates that the probability of sampling a poirit-$pace is inversely

proportional to the distance of that point to the centdrsgace, which makes the vicinity of the

center ofk-space more densely samplé realize this patterrggain Lustigetal 6 s sof t war e
packagg6) was used, which randomly generates many sampling patterns and retains the one that

has the smallest sidelob@peak ratio in the point spread function. This approach aims to create a

sampling pattern that induces optimally incoherent aliasing arti{éyts A high acceleration

factor of R = 14.8 was testedsing the joint Bayesian CS, Luseigal 6 s gr adi ent descen:
M-FOCUSS algorithm. For the gradient descent method, using wavelet and TV norm penalties

were seen to yield better results than using only one of them. In all experiments, all contination
of regularization parametetsy, and | .. from the se{10*,10°1072,0} were testedrad the
setting that gave the smallest reconstruction emas retaineds the optimal one. In the Shepp
Logan experiment, the parameter settihg =/ ... =10° was seen to yield optimal results

for the gradient descent method. The number of iterations was taken to be 50 in all of the
examples The Bayesian algorithm continues the iterations until convergence, which is

determined by

|D?, - D,y | < (D? - D?y) (2.24)

where D?, is the change in log likelihood at iterati@rand D?,.,, is the maximum change in

likelihood that has been encountered inkaterations. The convergence parametewas taken

to be10? in this example. For the MOCUSSmethod, each image was undersampled with the
same mask as phantom 1 in the joint Bayesian CS sirE®@B®USS does not admit different

observation matrices.
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2.3.2 SRI124 Multi-Channel Brain Atlas Data

This experiment makes use of the muliintrast data extracted from the SRI24 a(R®. The

atlas features structural scans obtained with three diffeoerast settings at 3T,

i.  Proton density weighted images: obtained with a 2D axiateltiad fast spin echo (FSE)
sequence (TR = 10000 ms, TE = 14 ms)
ii. T2 weighted images: acquired with the same sequence as the proton density weighted
scan, except with TE 98 ms.
iii.  T1 weighted images: acquired with a 3D axial-diep Spoiled Gradient Recalled
(SPGR) sequence (TR = 6.5 ms, TE = 1.54 ms)

The atlas images have a resolution of 256x256 pixels and covecra fidld-of-view (FOV).
Since all three data sets are already registered spatially, nprposssingvas appliecexcept for
selecting a single axial slice from the atlas. Prior to reecacton, retrospective undersampling
was applied along the phase encoding direction with acceler®tien4 using a different
undersampling mask for each image. Again a power law density function was utilized in selecting
the sampledk-space lines. In this case, alimensional pdf was employed, so that it was more

likely to acquire phase encoding lines close to the centde-splace. Reconstructions were

A

performed using Lustigta. 6s conj ugate gradi épt/,d8CEnt al gor

joint Bayesian method (withh =10°°) and the MFOCUSS joint reconstruction algorithm.

2333T Turbo Spin Echo (TSE) Slices with Early an:

T2-weighted axial multslice images of the brain of a young healthy male volunteer were
obtained with two different TE settings using a TSE sequence (256x256 pixel resolution with 38
slices, 1x1 mm in-plane spatial resolution with 3 mm tkicontiguous slices, TR = 6000 ms,TE

= 27 ms, Tk = 94 ms). Out of these, a single image slice was selected and its magnitude was
retrospectively undersampledhkrspace along the phase encoding direction with acceleftion

2.5 using a different madhr each image, again by sampling lines due tedarfensional power

law distribution. The images were reconstructed using Ledtf 6 s al gori t hm with a

! We use the retrospective undersampling phrase to indicat&-fipatce samples are discarded synthetically
from data obtained at Nyquist ratesoftware environment, rather than skipping samples during the actual scan.
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parameter setting/¢,, =/ =103), joint Bayesian CSlgorithm (with # =10°) and the M

wavelet

FOCUSS method.

2.3.4 Complex-Valued SheppLogan Phantoms

Using four numerical phantoms derived from the original SHeygan phantom, two complex
valued numerical phantoms were generated by combining the four images in real and imaginary
pairs. Retrospective undersampling was applied along the phase encodiotorditwith
accelerationR = 3.5 using a different undersampling mask for each image-dAnénsional

power law density function was utilized in selecting the samklspiace lines, making it more

likely to acquire phase encoding lines close to the cesftdrspace.Again many sampling
patternswere randomly generatezhd the one that has the smallest sidetokmeak ratio in the

point spread functiomvas retainedbut also the sampling mask&re constrainetb be mirror
symmetric with respect to the den of k-space. This way, it was possible to obtain the

undersampledk-space data belonging to the real and imaginary channels of the phantoms
separatelyThe images were reconstructed using Lustigl 6 s a | {0 /|l Fa0>)

joint Bayesian CS algorithm (reconstructing reain8aginary parts together, in addition to joint
multi-contrast reconstruction) and the-lOCUSS method. Further, ngmint reconstructions

with the Bayesian CS method (doing a separate reconstruction for each image, but reconstructing
real & imaginary chamels of each image jointly) and the FOCUSS algorithm {poont version

of M-FOCUSS) were conducted for comparison with Lustigt 6 s appr oach.

235ComplexVal ued Turbo Spin Echo Slices with Early

To test the performance of the algorithots complexvaluedin vivo images, axial multslice

images of the brain of a young healthy female subject were obtained with two different TE
settings using a TSE sequence (128x128 pixel resolution with 38 shig2snm in-plane spatial
resolution with 3 mm thick contiguous slices, TR = 6000 ms, T&7 ms, TE= 68 ms). Data

were acquired with a body coil and both the magnitude and the phase of the images were
recorded. To enhance SNR, 5 averages and a relatively langeiB-plane voxekize were used.

A single slice was selected from the dataset and its kkapace data were retrospectively
undersampled along the phase encoding direction with acceleRatichusing a different mask

for each image, again by sampling lines due tedariensional power law distribution. For the
complexvalued imagedlomain case, the masks were constrained to be symmetric with respect to

the line passing through the centekedpace. The images were reconstructed using Lestf 6 s
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algorithm (/, =/ =10°%), our joint Bayesian CS algorithm (reconstructing real &

wavelet
imaginary parts and mutontrasts together) and the MOCUSS method. In addition, ngmint
reconstructions with the Bayesian CS method (using a sepacatestreiction for each image, but
reconstructing real & imaginary parts of each image together) and the FOCUSS algorithm were

performed.

2.4 Results

2.4.1 CS Reconstruction with Extended ShepfL.ogan Phantoms

Fig. 22 presents the reconstruction results for the three algorithms for the extended phantoms,
along with thek-space masks used in retrospective undersampling. At acceldRatid®.8, the
Bayesian algorithm obtained perfect recovery of the rApése numericaphantom, whereas the
gradient descent algorithm by Lustg al returned 15.9 % root mean squared error (RMSE),

which we define as

RMSE = 100¢ Re(X)- x|,

], (229)

where X is the vector obtained by concatenatingLalinages together, and similarli is the
concatenated vector of all reconstructions produced by an inversion algorithm. The M
FOCUSS joint reconstruction algorithm yielded an error of 8.8 %. The reconstruction times were
measured to be 5 minutes for gradient descent, 4 minutessFO®UISS and 25 minutes for the

joint Bayesian CS algorithm.
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(h)

Fig 22 Reconstruction results with the extended SHepgan phantoms after undersampling

with acceleratiorR = 14.8, at 28x12 resolution. (a) Phantoms at Nyquist rate sampling. (b)
Undersampling p#erns ink-space corresponding to each image. (¢) CS reconstructions with

Lustigetal 6 s al gori t hm vy i e-mehesquaré érorP (d)%AbsBWESEor (flatso o t

for Lustigetal 6 s met hod. (e) RecondOCUSSE bt mamstructiobt ai ned
algorithm have 8.8 % RMSE. (f) Absolute difference between the Nyquist sampled phantoms and

the M-FOCUSS reconstruction results. (g) Joint Bayesian CS reconstruction resulted in 0 %

RMSE. (h) Absolute error plots for the Bayesian CS reconginsct

2.4.2 SRI124 Multi-Channel Brain Atlas Data

The results for reconstruction upon phase encoding undersampling with accelRratibrare

given in Fig.2.3. In this case, Lustigtal 6 s al gori thm returned 9.4 % RN
3.2 % and 2.3 % for MFOCUSS and joint Bayesian CS methods, respectively. The
reconstructions took 43 minutes for gradient descent, 5 minutes-fElDGUSS and 26.4ours

for the Bayesian CS algorithm.
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Fig. 2.3. Reconstruction results with SRI24 atlas after undersampling along the phase encoding
direction withR = 4, at 256x256 resolution. (a) Atlas images at Nyquist rate sampling. (b)
Undersampling patterns ik-space corresponding to éadmage. (c) Applying the gradient
descent algorithm proposed by Luségal resulted in reconstructions with 9.4 % RMSE. (d)
Absolute difference between the gradient descent reconstructions and the Nyquist rate images. (e)
M-FOCUSS reconstructions had2 % RMSE. (f) Absolute error plots for the-RMDCUSS
algorithm. (g) Joint Bayesian reconstruction yielded images with 2.3 % RMSE. (h) Error plots for
the joint Bayesian reconstructions.

243Turbo Spin Echo (TSE) Slices with Early and L

Fig. 24 depicts the TSE reconstruction results obtained with the three algorithms after
undersampling along phase encoding with acceler&m2.5. In this setting, Lustigtal. 6 s code
returned a result with 9.4 % RMSE, wheread-RICUSS and joint Bayesian reconstruction had

5.1 % and 3.6 % errors, respectively. The total reconstruction times were 26 minutes for gradient

descent, 4 minutes for I MOCUSS and 29.Boursfor the Baysian CS algorithm.
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Fig. 24. Reconstruction results with TSE after undersampling along the phase encoding direction

with R= 2.5, at 256x256 resolution. (a) TSE scans at Nyquist rate sampling. (b) Undersampling
patterns used in this experiment. (c) Reconstructions obtained with laistijf 6 s gr adi ent
descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for tloéemgradescent
reconstructions. (e) NFOCUSS joint reconstruction yielded images with 5.1 % RMSE. (f) Error

plots for the MFOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction
returned 3.6 % RMSE. (h) Error plots for the Bayesi&r€constructions.

These results are also included in Tahle &<, i ( Ffor gompadisprowith reconstruction
using the same undersampling pattern.

For brevity, additional resultare presentedth Table2.1 from more extensive tests in which
various undersampling patterns and acceleratimese employed To t e st t he al go
performance at a different resolution, the TSE and atlas images downsampledo size

128x128prior to undersampling, and similar RMSE resualtsthehigh resolution experiments
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were notedThe table also includes an experiment with 256x256 TSE scans accelerated along the

phase encoding witR = 2.5 but using thesameundersampling pattern for both images.

Dataset Resolution Undersamging Acceleration RMSE %
method factor R Lustig et M- Bayesian
al. Focuss CS
256x256 Phase encoding (PE 3 9.7 6.8 5.8
TSE 256%256 Power law 6 8.1 7.8 6.3
256%256 PE (Fig.2.4) 25 9.4 5.1 3.6
256x%x256 PE, same pattern 25 4.7
128x128 PE 2 8.1 3.8 2.1
256x256 Radial 9.2 6.0 4.5 3.0
SRI 24 128x128 PE 3 72 42 31

Table2.1. Summary of additional reconstruction results on the TSE and SRI 24 datasets using the

three algorithms after retrospective undersampling with various patterasegidration factors

2.4.4 Impact of Spatial Misregistration on Joint Reconstruction

Due to aliasing artifacts caused by undersampling, image registration prior to CS
reconstruction across muttontrast images is likely to perform poorlyhe effect of spatial
misalignmentsvas investigatedby shifting one of the images in the TSE dataset relative to the
other by 0 to 2 pixels with step sizes of % pixels using two different undersampling patterns. The
first pattern incur®k = 3 acceleratiomy 2D undersampling witk-space locations drawn from a
power law probability distribution. In this case, the effect of vertical misalignnvesstested
The second pattern undersamptespace aR = 2.5 in the phase encoding direction, for which
horizortal dislocationsvere testedFor speed, low resolution images at size 128x4@& used
M-FOCUSS and joint Bayesian CS methadsre testedor robustness against misregistration
and that the effect of spatial misalignment wdiserved to benild for both (Fig. 2.5). Even
though Bayesian CS consistently had less reconstruction errors relativ&@CMSS on both
undersampling patterns at all dislocations, the performance-BOMUSS was seen to change
less relative to Bayesian CS with respect to the medutranslations. For joint Bayesian CS,
reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law
sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for
the MMFOCUSS methodreor increased from 4.7 % to 4.9 % for power law sampling, and from

6.2 % to 6.6 % for phase encoding sampling.
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Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with Bayesian
CS and MFOCUSS, one of th€SE images was shifted relative to the other by 0 to 2 pixels with
step sizes of ¥ pixels using power law and phase encoding undersampling patterns. For speed,
low resolution images with size 128x128 were used. For joint Bayesian CS, reconstruction error
increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law sampling, and from 5.2
% to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for tROGUSS
method error increased from 4.7 % to 4.9 % for power law samplindr@nds.2 % to 6.6 % for

phase encoding sampling.

2.4.5 Complex-Valued SheppLogan Phantoms

Absolute values of the reconstruction results after undersampling with a symmetric maBk with

= 3.5 for the complexalued phantoms are depicted in 2. For @mplex signals, the error

metricRMSE= 100[& x}, /x|, is usedIn this case, Lustigtal 6 s

with 13.1 % RMSE, whereas joint reconstructions witfHFRICUSS and joint Bayesian methods

had 5.4 % and 2.4 % errors, respectivallie total reconstruction times were 21 minutes for

al gorithm

return

gradient descent, 0.5 minutes forMDCUSS and 18 minutes for the Bayesian CS algorithm. On

the other hand, reconstructing each complalwed image separately with FOCUSS and

Bayesian CS yielded 6.7 %#A.6 % RMSE.
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Fig. 2.6. Reconstruction results with theomplexvalued SheppLogan phantoms after
undersampling with acceleratidh= 3.5, at 128x128 resolution. (aMagnitudes of pantoms at
Nyquist rate sampling. (Bpymmetric mdersampling patterns kspace corresponding to each
image. (c)Real and imaginary parts of the first phantom (on the left in (a)). (d) Real and
imaginary parts of the second phantom (on the right in (@)¥LS reconstructions with Lustigf

a. 6s al gor i31 brRMSEL @ Abdodutk ertor plots for Lustigtal. 6 s m@t hod.
Reconstructions obtained with theMOCUSS joint reconstruction algorithm hevé % RMSE.
(h) Absolute difference betweenhe Nyquist sampled phantoms and theFRICUSS
reconstruction resultsi)(Joint Bayesian CS reconstruction resulted.#% RMSE. (h) Absolute
error plots for the Bayesian CS reconstructions.
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2.4.6 Complex-Valued Turbo Spin Echo Slices with Earlyandlat e TEO® s

Reconstruction results are compared in Eg. for the discussed algorithms. Luseg al 6 s
method had 8.8 % error upon acceleratiorRby 2 with a symmetric pattern, whereas the joint
reconstruction algorithms MOCUSS and joint Bayesian CS yielded 9.7 % and 6.1 % RMSE.
The processing times were 20 minutes for gradient descent, 2 minutesHOICMSS and 5.2
hoursfor the Bayesian CS algthm. Nonjoint reconstructions with FOCUSS and Bayesian CS
returned 10.0 % and 8.6 % errors.

Fig. 2.7.Reconstruction resultr complexvalued TSE imagesafter undersampling along the

phase encoding direction witk= 2, at128x128 resolution. (a)Magnitudes of th& SE scans at

Nyquist rate sampling. (pymmetric mdersampling patterns used in this experimés)tReal

and imaginary parts of the early echo image (on the left in (a)). (d) Real and imaginary parts of

the late echo ige (on the right in (a)fe) Reconstructions obtained with Luségal. 6 s gr adi ent
descent algorithm hav8.8 % RMSE. (d) Plots of absolute error for the gradient descent
reconstructions. (e) NFOCUSS joint reconstruction yielded images v@ih % RMSE. (f) Error

plots for the MFOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction
returneds.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions.
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With the same dataset, additional reconstructions were perfdorgahntify the effect of the
symmetry constraint on the sampling masks. Both of the late and early TE images were
reconstructed 5 times with freshly generated, random maskfwith (no symmetry constraints)
and also 5 times with freshly generated syetrin masks again & = 2. Using Lustiget al 6 s

method (., =10°%) with the random masks yielded an average error of 10.5 %, whereas using

symmetric masks incurred an average error of 11.5 %.

2.5 Discussion

The application of joint Bayesian CS MRI reconstruction to images of the same object acquired
under different contrast settings was demonstrated to yield substantially higher reconstruction
fidelity than either Lustiget al 6 s -jofnt) algorithm or join M-FOCUSS, but at the cost of
substantially increased reconstruction times in this initial implementation. In contrast to M
FOCUSS, the proposed algorithm allows for different sampling matrices being applied to each
contrast setting and unlike the gradietescent method, it has no parameters that need
adjustments. The success of this algorithm is based on the premise that toemtztt scans of
interest share a set of similar image gradients while each image may also present additional
unique featurg with its own image gradients. In FR8 the vertical image gradients belonging to

the TSE scanare presentedvherea simple experimenwas conductetb quantify the similarity
between them. After sorting the image gradient magnitudes of the earlgcBBENn descending
order, the cumulative energy in themas computedNext, the late TSE gradient magnitudas

sorted in descending order atg cumulative energy in thearly TSE gradientvas @lculatedoy

using the pixel index order belonging to thée TSE scan. This cumulative sum reacl®é&do of

the original energy, thus confirming the visual similarity of the two gradients.

It is important to note that in the influential work byefiial (9), the authors also consider joint
reconstruction of MRI images. However their dataset consists of five different slices taken from
the same scanso the motivation for their MRI work is different from whiatpresentd here.

Even though the multislice images have considerable similarity from one slice to the next, one
would expect multcontrast scans to demonstrate a yet higher correlation of image features and a

correspondingly larger benefit in reconstruction figelit
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Fig. 2.8 (a) Image gradients for the muttontrast TSE scans demonstrate the similarity under the
gradient transform. (b) To quantify this similarity, we computed the cumulative energy of the
image gradient of early TSE scarSg in TSE order). Then we sorted the late TSE scan (J)SE

in descending order, and computed the cumulative energy in d8tesponding to the sorted
indices in TSEwhich gave the curv@SE in TSE order. The similarity of the curves indicates
similar sparsity supports across images.

Two aspects of the proposed Bayesian reconstruction algorithm demand further attention. First,
relative to the other two algorithms we investigated, the Bayesian method is dramatically more
time consuming. The reconsttion times can be on the order of hours, which is prohibitive for
clinical use as currently implemented. As detailed in the Results section, the proposed algorithm
is about 40 times slower than gradient descent, and about 300 times slowerFE@OUSS br
the in vivo data. Future implementations and optimizations that utilize specialized scientific
computation hardwarare expectetb overcome this current drawback. Particularly, it is common
to observe an order of magnitude spapdvith CUDA (Compute Udified Device Architecture)
enabled Graphics Processing Units when the problem under consideration can be adapted to the
GPU architecturé€23). In a recent work, using CUDA architecture in compressed sensing was
reported to yield accelerations up to a factor of{24). It is expeced that parallelizing matrix
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