Deep Subspace Reconstruction with Zero-Shot Learning for Multiparametric Quantitative MRI
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Target Audience: Clinicians/researchers interested in deep-learning reconstruction algorithms and quantitative MRI.
Purpose: Low-rank subspace/shuffling methods have been powerful for reconstructing time-resolved MRI data and
quantitative MRI (QMRI) since they incorporate subspace bases that are calculated from Bloch equations'=. The 3D-
quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) has
been developed and used for acquiring high-resolution T1, T2, and PD maps from five measurements within each
repetition time (TR)*¢. However, when fitting the quantitative maps using a Bloch-simulated dictionary, it assumes
that each k-space data is acquired instantly at the first echo of the lengthy echo train, thus neglecting T relaxation
during the acquisition, which might cause blurring and biases in the reconstructed maps. Thus, in this study, we
propose to reconstruct QALAS time-series data using a low-rank subspace method and enable more accurate Ti and
T> mapping with reduced blurring compared to conventional QALAS. The overall scheme is presented in Fig. 1.
Furthermore, we propose a novel zero-shot deep-learning subspace method (Zero-DeepSub), which combines a scan-
specific deep-learning method” with a low-rank subspace, to further improve the fidelity of multiparametric qMRI.
Methods: We propose to use a zero-shot self-supervised learning scheme® for subspace reconstruction with the deep-
learning-based regularization' as follows:
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where y denotes the acquired multi-echo/multi-coil k-space data, x denotes the desired subspace coefficient im-
ages,and A = MFC®P : CV*K - CN*XT denotes the forward operator that has a k-space sampling matrix M, Fou-
rier transform F, coil sensitivity map C, and subspace bases @, which transforms the subspace coefficients (C¥*K)
into multi-echo/multi-coil k-space data (CN*¢*T), N, K, C,and T denote the matrix size of the image, number of
bases, coils, and echoes. D is the convolutional neural network (CNN)-based denoiser with trainable parameters 0,
which can be optimized by minimizing the training 10ss L¢qin:
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Fig. 1. (a) Sequence diagram of 3D-QALAS and (b)
overall scheme of the proposed subspace reconstruc-
tion method using subspace bases.

mein 25:1 Lirain (YA,;' AA,,}[ (Y@p’ Aepi 9)),
and optimal parameters @ can be determined by observing validation loss L,,4;:
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where H (y(.), A 0(.)) is the function of the unrolled network using the k-space data y(.,
forward model A.), and trainable parameters 6.y, which outputs the regularized subspace
coefficients. Here, a k-space sampling strategy is used, which splits the original k-space
sampling mask into three different subsets without overlap (i.e., @ = © U A U T) for model | |fiiasieln
training O, training loss A, and validation loss I' in each epochp (p =1, ... P). The de-
tailed architecture is presented in Fig. 2.
Acquisition: We acquired data from a volunteer using 3D-QALAS sequence on a 3T Prisma
scanner with a 32ch head array. The parameters are: FOV=240x240x202mm>, matrix | [l —
size=206x206x176, BW=330Hz/pixel, echo-spacing=5.76ms, turbo factor=128, TR=4.5s, | kst
TE=2.29ms, acceleration R=2, and scan time=8m 24s. We retrospectively conducted un-
dersampling with R=2x5 for further validation. Experiments: We evaluated our proposed
Zero-DeepSub by comparing it with 1) conventional QALAS that fits the Ti and T2 maps
using original five measurements, 2) subspace reconstruction without regularization, and
3) subspace reconstruction with /;-wavelet regularization. The dictionary was generated
with the following Ti, and T2 ranges: T1=[300-5000ms] and T>=[10-500ms]. We used 4
bases that could generate the simulated signals within 1.25% errors. The sequence diagram
of QALAS is presented in Fig. 1b. We used BART for estimating coil sensitivity maps and
comparison subspace methods''.
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Fig. 3. In vivo results of reconstructed (a) subspace coefficients and (b) Ti and T> maps reconstructed || Fig. 4. Retrospectively undersampled data with R=2x5, which
using three different subspace reconstruction methods. requires Im 41s scan for 1.15mm isotropic resolution.
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Results: Fig. 3 presents in vivo subspace coefficients and T and T> maps reconstructed using three different subspace methods. The proposed method shows noise-
reduced and sharper coefficients, especially for the third and fourth ones, which result in better T1 and T> maps. Conclusion: In this study, we demonstrated that accurate
Ti and T> maps with reduced blurring can be obtained using the proposed Zero-DeepSub, which combines scan-specific deep-learning reconstruction with low-rank

subspace, from 3D-QALAS measurements.
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