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SynopsisSynopsis
RAKI can perform database-free MRI reconstruction by training models using onlyRAKI can perform database-free MRI reconstruction by training models using only
auto-cal ibration signal  (ACS) from each speci?c scan. As i t  trains a separate modelauto-cal ibration signal  (ACS) from each speci?c scan. As i t  trains a separate model
for each individual  coi l ,  learning and inference with RAKI can be computational lyfor each individual  coi l ,  learning and inference with RAKI can be computational ly
prohibit ive,  part icularly for large 3D datasets.  In this abstract,  we accelerate RAKIprohibit ive,  part icularly for large 3D datasets.  In this abstract,  we accelerate RAKI
by more than 200 t imes by direct ly learning a coi l -combined target and furtherby more than 200 t imes by direct ly learning a coi l -combined target and further
improve the reconstruction performance using joint reconstruction acrossimprove the reconstruction performance using joint reconstruction across
mult iple echoes together with an el l ipt ical-CAIPI  sampling approach. We furthermult iple echoes together with an el l ipt ical-CAIPI  sampling approach. We further
deploy these improvements in quantitat ive imaging and rapidly obtain Tdeploy these improvements in quantitat ive imaging and rapidly obtain T  and T and T **
parameter maps from a fast EPTI  scan.parameter maps from a fast EPTI  scan.

IntroductionIntroduction
A number of machine learning approaches have been proposed for MRI reconstruction that allow
high-quality reconstructions from highly undersampled data [1]. A promising approach in this
direction is RAKI [2], which trains networks solely using autocalibration signal (ACS) data from each
speciIc scan, without relying on a large training dataset. A drawback of RAKI is in the training and
reconstruction time which can be prohibitively long as it needs to learn a model for real and
imaginary components of each individual coil (e.g., 64 models for 32 channel data). This may be
particularly problematic for large 3D datasets, impeding its clinical adoption. Self-consistent RAKI
(sRAKI) [3,4] learns self-consistency using a single model for all the coils but the use of iterative
optimization during reconstruction can still be time-consuming. In this abstract, we propose eRAKI
to speed up RAKI by directly learning to reconstruct coil-combined target data using ESPIRiT-based
sensitivity estimation[5]. We perform the learning/reconstruction in 3D k-space to beneIt from 3D
convolutions while utilizing the fully-sampled readout dimension to eUectively increase the size of
available ACS data. We show that the proposed eRAKI accelerates RAKI’s computational speed by
more than 200 times while improving reconstruction performance by taking the advantage of multi-
echo joint reconstruction and elliptical-CAIPI [10] sampling. We further demonstrate the ability of
eRAKI to speed-up the reconstruction of echo planar time-resolved imaging (EPTI)[9] acquisition by
10x times to provide distortion-free T  and T * parameter maps.

Methods and ExperimentsMethods and Experiments
eRAKI Reconstruction

We use ESPIRiT to estimate coil sensitivities  from ACS data  and perform coil combination to
obtain single-channel ACS data in k-space, . We take  as the network’s target to learn
and train a single model using the following objective function:

where  is the network,  are the network parameters,  is the input under-sampled k-space.
Regularization terms (  = 0.5 and  = 0.15) are added to speed up the convergence.
After training the network using ACS data, we apply the trained model to perform inference on the
entire undersampled k-space and the network output is the reconstruction result. The whole
process takes place in 3D k-space to beneIt from 3D convolution to help compensate for any
information loss during the coil combination process. This also further reduces the overall
reconstruction time, as only a single network needs to be trained across the whole 3D imaging
volume, rather than one model per slice. Figure 1 shows the implementation of the proposed eRAKI
network.
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FiguresFigures

Our eRAKI uses 5-layer 3D CNN
architecture. Since the learning
target is coil-combined data, we
need to learn R lines when the
acceleration rate is R. The output
channel is 2R so we only need to
use one model to reconstruct all
the data. Layer4 was followed by
rectiIer linear units (ReLU) as
activation functions and we set
n =n =n =n =64. The kernel
sizes of the layers are 3×3×7,
1×1×5, 1×1×5, 1×1×3, and 1×1×1,
respectively.

Comparisons between 2D
GRAPPA, 2D RAKI, and eRAKI
reconstructions on 3D ME-
MPRAGE data using 24×24×256
ACS and 3×3 undersampling. We
use Tikhonov regularization in
GRAPPA and set parameter
λ=1×e . Our eRAKI beneIts from
3D convolutions and can achieve
comparable performance with
high-speed reconstruction.
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eRAKI with joint reconstruction and elliptical-CAIPI sampling

The proposed eRAKI is applied on 3D ME-MPRAGE data [6,7] and compared with 2D GRAPPA [8] and
2D RAKI as shown in Figures 2 and 3. To further improve reconstruction performance, we apply
elliptical-CAIPI sampling while maintaining the same acceleration rate, and extend eRAKI to perform
joint reconstruction across three echoes by concatenating echoes in the coil dimension. 

eRAKI with EPTI

EPTI [9] can rapidly acquire distortion‐ and blurring‐free multi‐contrast data using an egcient
spatiotemporal CAIPI sampling  and B0-informed GRAPPA‐like reconstruction. We apply RAKI
and eRAKI on EPTI data for each acquired slice in  space. All the experiments were done
on a workstation with an Nvidia TITAN V and an AMD Ryzen Threadripper 3970X 32-Core Processor. 
Code/data are available at https://anonymous.4open.science/r/77eb09e7-8a65-4a57-b559-
741d6f8d4f37/.

ResultsResults
Figure 2 shows that eRAKI achieves comparable performance as RAKI and GRAPPA, while improving
the reconstruction speed >200-fold. Figure 3 shows that the reconstruction performance of eRAKI
can be further improved by combining multi-echo joint reconstruction and elliptical-CAIPI sampling.
Figure 4 shows that eRAKI can be applied to more complicated and advanced sampling methods
where GRAPPA-like reconstruction can work, like EPTI, and achieve comparable performance while
speeding up the computation by 10-fold. The table in Figure 5 summarizes the reconstruction times
of the tested algorithms for these two datasets.

Discussion and ConclusionDiscussion and Conclusion
We accelerate RAKI reconstruction dramatically using a coil-combined target. For this, we capitalized
on the fact that coil combination is a convolution in k-space, and can be well represented by a
convolutional layer. Figure 5 shows the learning/inference time of each method. GRAPPA is
implemented on CPU and RAKI and eRAKI run on GPU. Since GRAPPA needs to learn a model for
each coil, it may not beneIt signiIcantly from a GPU implementation. In conclusion, eRAKI can
reconstruct 3D volumes in a short timeframe and may facilitate the adoption of scan-speciIc deep
learning on clinical scanners.
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eRAKI’s performance can be
further improved using joint
reconstruction across echoes
and elliptical-CAIPI sampling. In
joint reconstruction, shifted
patterns are used between
diUerent echoes and all the
echoes are reconstructed using
one model. In this case, the
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2×R×N . Elliptical sampling
provides ~4/π additional
acceleration so that R =1×7
sampling can maintain the total
acceleration of R≈9.
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learning/reconstruction process.
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Summary of learning and
reconstruction time between
GRAPPA, RAKI and eRAKI
reconstructions. Proposed eRAKI
signiIcantly reduces the overall
reconstruction time since low-
resolution ESPIRiT coil
sensitivities can be estimated
rapidly. Note that GRAPPA is
implemented on CPU while RAKI
and eRAKI are implemented on
GPU. But simply putting GRAPPA
on gpu won't help much, since it
still needs 64 diUerent models
for the typical 32 channel
receiver coil data while eRAKI
needs only one model.
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